ベーシック物理

責任者・コーディネータ	- 物理学科 佐藤 英一 教授		
担当講座·学科(分里	为 物理学科		
担 当 教	担 当 教 員 佐藤 英一 教授、寒河江 康朗 助教、小田 泰行 助教		
対象学年			
期間	前期		

· 学習方針(講義概要等)

物理学は難しいと思われがちであるが、医歯薬系の業務において物理学に関連する知識は必要である。たとえばX線の発見は、人体の透視という医療において革命的な診断法をもたらした。このような医療の進歩は科学技術の発展に依拠しており、これら技術のほとんどの原理は物理学に基づいている。よって本科目では、医療に役立つ医学物理の基本概念を修得する。

・教育成果 (アウトカム)

初歩の力学、熱力学、電磁気学、そして初等量子力学などを平易な式を用いて表し、簡単な原理図を描くことにより、基礎的な物理学の知識が得られるようになる。また医歯薬に関わる例を数多く学ぶことにより、物理学に対する興味が深まるようになる。 (ディプロマポリシー: 8)

· 到達目標(SBO)

- 1. 距離、速度、加速度の関係を式で表し、説明できる。
- 2. 質点系の運動を式で表現し、概説できる。
- 3. 力学的エネルギーを式で表現し、説明できる。
- 4. 簡単な流体力学を式を用いて説明できる。
- 5. 熱力学の諸法則を式を用いて表し、解説できる。
- 6. 簡単な直流回路を図示し、電圧、電流、抵抗などの値を計算できる。
- 7. 簡単な交流回路を図示し、インピーダンスなどの値を計算できる。
- 8. 光電効果などの初等量子力学を解説できる。

·講義日程

【講義】

月日	曜日	時 限	講座 (学科)		
4/12	金	1	物理学科	佐藤 英一 教授	物理量と基本単位 1. SI と CGS の単位系を説明できる。 2. 主要な単位と SI 接頭語を説明できる。 事前学修:資料 pp. 1-5
4/18	木	1	物理学科	佐藤 英一 教授	速度と加速度 1. V-T グラフを図示できる。[C-1-2)-①] 2. 等速直線運動を説明できる。 [C-1-2)-①] 3. 等加速度直線運動を説明できる。[C-1-2)-①] 事前学修:資料 pp. 5-8
5/9	木	1	物理学科	佐藤 英一 教授	放物運動 1. 運動方程式をつくることができる。[C-1-2)-①] 2. 軌道方程式を導出することができる。[C-1-2)-①] 事前学修:資料 pp. 9-13
5/16	木	1	物理学科	佐藤 英一 教授	等速円運動と単振動 1. 等速円運動を図解し、加速度、遠心力、向心力などを式で表すことができる。[C-1-2)-①] 2. 単振動の周期と振動数を式で表すことができる。[C-1-2)-①] 事前学修:下記 URL にある動画を見て、要点をまとめる。 https://www.youtube.com/watch?v=9St5quUQZdc
5/23	木	1	物理学科	佐藤 英一 教授	カ学的エネルギー保存則と摩擦 1. 位置エネルギーと運動エネルギーを理解し、エネルギー保存則を説明できる。[C-1-2)-①] 2. 単振動の周期と振動数を式で表すことができる。[C-1-2)-①] 事前学修:資料 pp. 13-15

5/30	木	1	物理学科	佐藤 英一 教授	連続の式とベルヌーイの定理 1. 体積一定と質量一定に基づく連続の式を説明できる。[C-1-2)-①] 2. ベルヌーイの定理に関わる図を描き、式を導出することができる。[C-1-2)-①] 事前学修: 下記 URL にある動画を見て、要点をまとめる。 https://www.youtube.com/watch?v=80MZY39aipc
6/6	木	1	物理学科	寒河江 康朗 助教小田 泰行 助教	前半のまとめ 1. 講義中に行う確認問題の解答や解説を再度行う。 2. 小テストを実施する。 事前学修:確認問題 1-10
6/13	木	1	物理学科	ボイル、シャルル、ボイル・シャルルの法 1. 理想気体の状態方程式を説明できる。 2. ボイル・シャルルの法則を使って温度、 圧力を求めることができる。 事前学修:下記 URL にある動画を見て、要 とめる。 https://www.youtube.com/watch?v=6lkyq\	
6/20	木	1	物理学科	佐藤 英一 教授	直流回路とオームの法則 1. オームの法則を使って電流、電圧、抵抗を求めることができる。[C-1-2)-③] 2. 電力とジュール熱を求めることができる。[C-1-2)-③] 事前学修:資料 pp. 15-18
6/27	木	1	物理学科	佐藤 英一 教授	抵抗の連結とキルヒホッフの法則 1. 合成抵抗を求めることができる。[C-1-2)-③] 2. キルヒホッフの法則を使って回路の電流などを求めることができる。[C-1-2)-③] 事前学修:資料 pp. 18-19
7/4	木	1	物理学科	佐藤 英一 教授	コンデンサー。 1. 合成容量を求めることができる。[C-1-2)-③] 2. 電気量、電気容量、電気エネルギーを求めることができる。[C-1-2)-③] 事前学修:資料 pp. 19-21

7/11	木	1	1. 交 説明で 2. イン 物理学科 佐藤 英一 教授 ができる 3. リス できる		交流回路とインピーダンス 1. 交流の周波数、周期、最大値、実効値などを 説明できる。[C-1-2)-③] 2. インピーダンスに関わるベクトル図を描くこと ができる。[C-1-2)-③] 3. リアクタンスやインピーダンスを求めることが できる。[C-1-2)-③] 事前学修:資料 pp. 22-24	
7/18	木	1	物理学科	佐藤 英一 教授	放射線 1. 特性 X 線と制動 X 線の発生原理を図解できる。 $[C-1-2)-3]$ 2. α 、 β 、 γ 線の発生原理と特性を説明できる。 $[C-1-2)-3]$ 3. 放射線量の単位を説明できる。 $[C-1-2)-3]$ 事前学修:下記 URL にある動画を見て、要点をとめる。 https://www.youtube.com/watch?v=d4AJMqqwcd	
7/19	金	1	物理学科	寒河江 康朗 助教小田 泰行 助教	後半のまとめ 1. 講義中に行う確認問題の解答や解説を再度行う。 事前学修:確認問題 11-20	

・教科書・参考書等

教:教科書 参:参考書 推:推薦図書

	書籍名	著者名	発行所	発行年
参	医歯系の物理学 第2版	赤野松太郎,他	東京教学社	2015

・成績評価方法

期末試験を含めて計2回の試験を行い、その平均点を評点とする。

・特記事項・その他

講義中に行う確認問題の解答や解説を次回の講義で行う。

中間テストの採点後に点数を発表し、正答率が低い問題を重点的に解説する。

講義前にシラバスにある講義内容を調べ、次の URL から資料をダウンロードし、関連の事前学修課題を約30分かけて行う。

http://physimu.jp/e-learning.pdf

・授業に使用する機器・器具と使用目的

使用区分	機器・器具の名称	台数	使用目的		
講義	パソコン(Dell・Power Edge T105)	1	講義・実習資料作成、他		
講義	パソコン (Dell・531S)	1	講義・実習資料作成、他		
講義	パソコン(Dell・Vostro 3300)	1	講義・実習資料作成、他		
講義	パソコン(HP・ML115)	1	講義・実習資料作成、他		
講義	ノートパソコン(東芝・PT35034BSFB)	1	講義・実習資料作成、他		