卒業研究1

責任者・コーディネ	ーター	創薬有機化学分野 授	予 河野 富一 教授、	薬学教	牧育学分野 奈良場 博昭 教
担当講座・学科	(分野)	然物化学分野、梳 防御学分野、分子	幾能生化学分野、薬学 子細胞薬理学分野、創	教育学 J剤学分	2分野、創薬有機化学分野、天 2分野、情報薬科学分野、生体 2野、薬物代謝動態学分野、分 2野、臨床薬剤学分野、地域医
対象学年		4			
期間		通期	 区分・時間数 	実習	90 時間
単位数		4 単位			

· 学習方針(講義概要等)

卒業研究1では、薬学部各分野における当該専門分野の研究を行い、講義、演習、実習で学んだ薬学関連の知識と技術の実践的な習得を図る。実際の研究現場での器具、機器、試薬、動物などの取扱を学び、正確で安全な実践手技の習得を目指す。また、主体的に研究を遂行する上で必要な論理的な考え方を身につける。加えて、研究倫理とその重要性を理解し、研究に取組む心構えや他の人と協調して研究を進めるチームワークの精神も身につける。

·到達目標(SBO)

- 1. 研究倫理を理解し、その重要性を説明できる。(☆)
- 2. 研究における記録の重要性を理解し、記録の仕方を説明できる。 (☆)
- 3. 卒業研究1実施報告書を作成できる。(☆)
- 4. 卒業論文の書き方を概説できる。

・講義日程

月日	曜日	時限	講座・分野	担当教員		講義内容/到達目標
4/25	水	3	薬物代謝動態学分野	小澤	正吾 教授	研究倫理について
4/25	水	4	薬物代謝動態学分野	小澤	正吾 教授	研究記録について

·成績評価方法

知識・技能の習得度(40%)、研究に取り組む態度(50%)、研究発表内容(10%)で評価する。

・特記事項・その他

研究における倫理と記録に関する講義を受講する。

卒業研究 1(創薬有機化学分野)

責任者・コーディネーター

創薬有機化学分野 河野 富一 教授

・教育成果(アウトカム)

医薬品の多くは合成された有機化合物であり、生体の中で特定の生体分子(蛋白質など)に選択的に結合して活性を発現する。創薬有機化学分野では、有機化学を基盤においてこの仕組みを解析・理解し新しい分子の設計と化学合成を行うことによって新しい薬作りを目指している。本分野では、卒業研究1および2を通じて、天然に存在する生理活性物質を範とした有効な化合物の創製、および合成有機低分子による細胞情報伝達系の制御を基盤とする創薬を主たる研究課題とする。これらに関連した研究課題を学生と相談のうえで決定し、研究に必要な法規範と倫理を遵守して研究を実施し、問題解決能力を身につける。さらに、テーマから逸脱しない範囲での自己の考えに基づく研究活動を推奨し、より高度な研究能力が身につくようになる。まず、卒業研究1では、担当する研究の背景、問題点をもとに、独創性のある研究仮説をたて、その仮説にかかわる研究計画の立案、実施、結果解析および考察を重点的に行う。

・到達目標(SBO)

- 1. 現象を客観的に捉える観察眼をもち、論理的に思考できる。 (☆)
- 2. 自らが実施する研究に係る法規範を遵守して研究に取り組む。
- 3. 研究課題に関する国内外の研究成果を調査し、読解、評価できる。 (☆)
- 4. 課題達成のために解決すべき問題点を抽出し、研究計画を立案する。
- 5. 研究計画に沿って、意欲的に研究を実施できる。 (☆)
- 6. 研究の各プロセスを適切に記録し、結果を考察する。
- 7. 研究成果の効果的なプレゼンテーションを行い、適切な質疑応答ができる。(☆)
- 8. 研究成果を報告書としてまとめることができる。
- 9. 新たな課題にチャレンジする創造的精神を養う。(☆)

コマ数	講座・分野	担当教員	講義内容/到達目標
60	創薬有機化学分野	河野 富一 教授	合成有機低分子を基軸とした生体機能解明ツールの開発、および医薬のリード・シード化合物の創製を目的とした医薬品合成化学研究に取り組む。創薬に向けた実践的な医薬分子設計や、コンビナトリアルケミストリーなどの最先端有機合成手法について学ぶとともに、可能な限り生物活性評価も行う。グループ討論等を通じて、有機合成化学および創薬に関して最新の研究動向も常に探る。 1. 現象を客観的に捉える観察眼をもち、論理的に思考できる。 2. 自らが実施する研究に係る法規範を遵守して研究に取り組む。 3. 研究課題に関する国内外の研究成果を調査し、読解、評価できる。 4. 課題達成のために解決すべき問題点を抽出し、

			研究計画を立案する。 5. 研究計画に沿って、意欲的に研究を実施できる。 6. 研究の各プロセスを適切に記録し、結果を考察する。 7. 研究成果の効果的なプレゼンテーションを行い、適切な質疑応答ができる。 8. 研究成果を報告書としてまとめることができる。 9. 新たな課題にチャレンジする創造的精神を養う。
60	創薬有機化学分野	田村 理 准教授	主に、興味深い生物活性を有する天然有機化合物の全合成を行う。構造活性相関研究への展開を念頭においた合成ルートを設計し、目的とする化合物を合成する力を養う。合成した化合物ついては生物活性を評価し、その結果を基に活性向上を指向した類談体を設計する。また、ADMEを意識した設計を行うことで医薬品リードの創製を目指す。各局面で行き当たるで医薬品リードの創製を目指す。各局面で行き当たるであろう問題点に対してディスカッション、文献検索等を通して解決策を見出すことを学ぶ。さらに全合成の途上で見出した新奇な反応について精査して、反応開発の端緒を学ぶ。到達目標は同上
60	創薬有機化学分野	辻原 哲也 助教	主に、立体中心をもつ光学活性化合物の開発)に取り を目的とした不斉合成研究(触媒反応開発子を子子の合成経路の策定・会域の大きを子子の合成経路の策定・会域分では、一次では、一次では、一次では、一次では、一次では、一次では、一次では、一次
60	創薬有機化学分野	稲垣 祥 助教	多くの有用物質にはとりわけ母体骨格に環状構造を含む分子が多い。そのため、これらの効率的且つ簡便な構築法の開発は、医薬品、生理活性物質の安定供給を通した医療社会への貢献が期待される。卒業研究では、これまでに学習してきた有機化学の知識を駆使して複雑な環状構造を持つ有機分子の新しい合成法の開発を行う。卒業研究を進める過程で、分子を設計して合成する有機化学の基礎の習得と、分子の性質を評価する様々な測定技術の習得を通して有機化学実験の一連の流れを学ぶ。研究を遂行する

上で直面する問題点に対してディスカッション・文献検索を適宜行い、解決法の糸口を見つけ出す。さらに、見出された新規合成法は天然物や医薬品化合物の全合成へ展開させる。 到達目標は同上

· 教科書·参考書等(教: 教科書 参: 参考書 推: 推薦図書)

	書籍名	著者名	発行所	発行年
参	若手研究者のための有機合成 ラボガイド	山口素夫	講談社	2010
参	実験化学講座 19-26 巻 第 5 版	日本化学会編	丸善	2004
参	化学を学ぶ人のレポート: 論 文: 発表マスターガイド	今田 泰嗣、大嶋 孝志、廣 瀬 敬治	化学同人	2010

使用区分	機器・器具の名称	台数	使用目的
実習	ロータリーエバポレーター(EYELA、N-1000S- W)	6	有機溶媒の留去
実習	ダイヤフラムポンプ(EYELA、DTC-21)	6	有機溶媒の留去
実習	冷却水循環装置(EYELA、CCA-113)	6	有機溶媒の留去
実習	マグネチックスターラー(島津、SST-175)	6	反応溶液の撹拌
実習	ウォーターバス(石井理化、E-3)	10	溶液の加温
実習	アイラジャッキ(EYELA、EJ-B 型 116130)	22	反応装置組み立て用
実習	融点測定装置(ヤマト科学、MP-21)	1	融点測定
実習	TLC 用 UV ランプ(ケニス、3-115-917)	2	化合物の検出
実習	油回転真空ポンプ (ケニス、TSW-50(50Hz))	2	化合物の乾燥
実習	高速液体クロマトグラフシステム一式(日本分光、PU- 2089)	2	化合物の分析
実習	リサイクル型分取高速液体クロマトグラフシステム一式(日本分析工業 LC-9102)	1	化合物の分離精製
実習	電気定温乾燥器(ケニス、3-137-517)	2	器具の乾燥
実習	超音波洗浄器(島津、US-106)	1	器具の洗浄

実習	高精度電子天秤(池本理化、573-141-01)	5	秤量
実習	高精度電子天秤(池本理化、573-142-12)	2	秤量
実習	フ-リエ変換赤外分光光度計(日本分光 FT/IR- 4100+ART PR410-S)	1	構造決定
実習	紫外可視分光光度計(日本分光 V-650DS)	1	構造の決定
実習	有機合成用攪拌振とう機(EYELA、CCX-1000)	1	溶液の撹拌・振とう
実習	ノート型パソコン	5	構造式描画
実習	簡易乾燥器 (ケニス、3-137-561)	1	TLC プレートの乾燥
実習	ステンレスシェルワゴン(島津、W2-S4609S)	2	実験機器置き
実習	ドラフト(島津)	4	有機溶媒の蒸気の排気
実習	核磁気共鳴装置(JEOL, NMR)	1	化合物の構造決定およびデー タ解析
実習	高速液体クロマトグラフ質量分析計(島津、 LCMS)	1	化合物の構造決定およびデー タ解析
実習	オイルバス (TGK、FWB-120)	1	反応溶液の加温
実習	ホットプレート付マグネチックスターラー (EYELA、RCH-20L)	1	反応溶液の加温・攪拌
実習	デスクトップパソコン(DELL、DTOP008-004)	1	学術文書閲覧・作成支援
実習	分析電子天秤(GR-202)	1	秤量

卒業研究 1(天然物化学分野)

責任者・コーディネーター

天然物化学分野 藤井 勲 教授

・教育成果 (アウトカム)

天然物化学分野においては、生理活性天然物の探索、化学構造決定や、生合成など、有機化学を基盤として、生化学や分子生物学の研究手法も交えて天然有機化合物について総合的に研究する。なかでも微生物や植物が天然有機化合物を作り出す生合成の仕組みや制御機構を明らかにして、その化合物生産能力を積極的に利用した「生物合成」の新しい方法論の確立とその応用を目指している。卒業研究においては、当分野の研究分野と各学生の研究に対する興味を考慮して具体的な研究テーマを決める予定である。 (ディプロマ・ポリシー: 2, 5, 7, 8, 9, 10)

·到達目標(SBO)

- 1. 天然有機化合物に関する基礎知識の確認、および発展的知識を学ぶ。 (☆)
- 2. 天然物化学実験で必要な実験手技・機器操作を習得し、実施することができる。 (☆)
- 3. 天然物化学に関する研究テーマを理解し、必要な実験計画を立案することができる。 (☆)
- 4. 立案した実験計画に基づき、実験を遂行することができる。 (☆)
- 5. 実験で得られたデータ・結果を総合的に考察し、取りまとめて説明することができる。 (☆)
- 6. 研究テーマに関する文献情報を収集し、セミナーなどで紹介することができる。 (☆)
- 7. 学内外の学会・講演会・研究会などに積極的に参加し、自ら学ぶ姿勢を身につける。 (☆)
- 8. 実験で得られた結果をまとめ、卒業研究として発表し、卒業論文を完成させる。

コマ数	講座・分野	担当教員	講義内容/到達目標
60	天然物化学分野	藤井 勲 教授	天然有機化合物の生合成研究 1. 糸状菌などの微生物が天然有機化合物を作り出す生合成の仕組みや制御機構を遺伝子、酵素、化合物レベルで総合的に明らかにする。 2. 化合物生産能力を積極的に利用した「生物合成」の新しい方法論の確立を目指す。 3. 研究を通じて、実験技法の習得だけではなく、積極的に取り組む姿勢や、情報発信能力なども身につける。
60	天然物化学分野	林 宏明 准教授	薬用植物の二次代謝に関する研究 1. 薬用植物由来の生理活性物質の単離・精製・構造決定法を修得する。 2. 生合成酵素などの遺伝子解析により、高等植物の二次代謝の多様性を明らかにする。 3. 研究計画の立案、実施、得られたデータの解析法などを身につける。
60	天然物化学分野	浅野 孝 助教	植物アルカロイドの生物合成研究 1. アルカロイドを効率よく生産する培養細胞を植物

から誘導し、薬用成分が簡単かつ大量に得られるシステムの構築を行なう。

2. 植物アルカロイドの生合成メカニズムを遺伝子レベルで明らかにすることにより、天然には存在しない新薬の創製を目指す。

· 教科書·参考書等(教: 教科書 参: 参考書 推: 推薦図書)

	書籍名	著者名	発行所	発行年
参	Medicinal natural products : a biosynthetic approach 3rd ed	Paul M. Dewick	Wiley	2009
参	エッセンシャル天然薬物化学	奥山 徹 編	医歯薬出版	2007
参	天然医薬資源学 第6版	竹田 忠紘 他 編	廣川書店	2017

・特記事項・その他

日々の研究の事前準備や結果の解析・考察などには最低 30 分を要する。 関連資料や文献に目を通して、実験の目的や内容の理解に努める。

使用区分	機器・器具の名称	台数	使用目的
実習	ドラフトチャンバー(島津理化、CBR-Sc15-F)	2	揮発性有機溶媒の取扱
実習	エバポレーターシステム(東京理化、 SYS09093)	2	溶媒留去
実習	電子天秤(0.001g)(島津理化、UX620H)	1	試薬秤量
実習	電子天秤(0.1mg)(島津理化、AUW220)	1	試薬秤量
実習	超低温フリーザー(三洋電機バイオシステム、 MDF-U52V)	2	サンプル保管
実習	バイオメディカルフリーザー(三洋電機バイオ システム、バイオメディカルフリーザー)	2	サンプル保管
実習	研究用保冷庫(三洋電機バイオシステム、MPR- 1410)	2	サンプル保管
実習	バイオクリーンベンチ(三洋電機バイオシステム、MCV-B131S)	2	無菌操作実験
実習	オートクレーブ(トミー精工、SX-500)	2	無菌処理
実習	微量遠心機(トミー精工、MX-301、307)	4	サンプル遠心

実習実習実習実習実習	卓上遠心機(久保田商事、2420) HPLC 一式(島津、Prominence) PCR(タカラバイオ、 ThermalCyclerDiceGradient)	2	サンプル遠心成分分析
実習	PCR(タカラバイオ、	_	成分分析
		Л	
中羽		4	遺伝子増幅
大日	ゲル撮影装置(東洋紡、FAS-Ⅲ201)	1	ゲル写真撮影
実習	pH メータ(堀場製作所、F-52)	1	pH 調整
実習	インキュベートボックス(タイテック、M- 280)	2	微生物培養
実習	凍結乾燥システム(東京理化、SYS10019)	1	サンプル乾燥
実習	真空ポンプ(東京理化、TSW-300)	2	サンプル乾燥
実習	卓上型振とう恒温槽(タイテック、パーソナル- 11・SD セット)	2	微生物培養
実習	ユニット恒温槽(タイテック、サーモミンダ SD-B)	2	恒温操作
実習	超音波洗浄器(東京理化、WT-200-M)	1	器具洗浄
実習	恒温振とう培養機(タイテック、BR-3000LFニ段式)	1	植物細胞培養
実習	恒温振とう培養機(タイテック、BL3000LF)	1	微生物培養
実習	中型振とう培養機(タイテック、BR-43FL)	1	微生物培養
実習	恒温振とう培養機(タイテック、BR-42FL.MR)	1	微生物培養
実習	グロースチャンバー(三洋電機、MLR-351)	1	植物培養
実習	顕微鏡(オリンパス、CX31)	1	微生物の観察
実習	マイクロプレートミキサー(エムエス機器、SI- 0405)	1	溶液攪拌
実習	DNAシーケンサー (ABI,3130XL-200)	1	塩基配列の分析
実習	超伝導NMR(500 MHz)(JEOL)	1	化合物の構造解析
実習	リアルタイムPCR(ABI PCR システム 7500-1)	1	mRNA 発現量の解析
実習	旋光計(日立 SEPA-300)	1	旋光度の測定
実習	LC-TOFMS(島津製作所)	1	化合物の分析、構造解析
実習	冷却遠心機(久保田商事、7780)	1	サンプル遠心
実習実習実習実習	0405)DNAシーケンサー (ABI,3130XL-200)超伝導NMR (500 MHz) (JEOL)リアルタイムP C R(ABI PCR システム 7500-1)旋光計 (日立 SEPA-300)	1 1 1	塩基配列の分析 化合物の構造解析 mRNA 発現量の解析 旋光度の測定

実習	iMac (Apple)	3	データ分析、整理
実習	ペリスタポンプ(アトー、SJ1211H)	1	カラム操作などの送液
実習	バイオシェーカー(タイテック、BR-22FP・ MR)	2	微生物培養
実習	クールトラップ(テクノシグマ、OSR-CT125)	1	エバポレーター排気のトラッ プ
実習	インキュベートボックス(タイテック、M- 210FN)	1	定温操作
実習	ノートパソコン(Apple MacBook Air)	1	データ処理、プレゼンテーシ ョン
実習	プリンター (OKI、C841DN)	1	印刷
実習	人工気象器(日本医化、LH241SP)	2	植物栽培
実習	中型振とう培養機(タイテック、NR20)	2	植物培養
実習	超音波洗浄器(三商、US106)	1	器具洗浄
実習	超純水製造装置(メルク、 Z00QSVCJP)	1	実験に用いる超純水の製造
実習	LED 光照射ユニット(タイテック、LC- LED450W)	1	植物栽培
実習	中型恒温庫 インビトロボックス(タイテック、 i B-230)	1	培養
実習	恒温乾燥機(パナソニック、MOV-212F-PJ)	1	器具乾燥
実習	凍機付インキュベーター(パナソニック、MIR- 154)	1	微生物培養
実習	中型振とう機(タイテック、NR-30)	1	微生物培養
実習	恒温振とう培養器(タイテック、M-BR-104P)	1	微生物培養
実習	ビーズクラッシャー(タイテック、μT-12)	1	細胞破砕

卒業研究 1(構造生物薬学分野)

責任者・コーディネーター

構造生物薬学分野 野中 孝昌 教授

・教育成果 (アウトカム)

人間の生体内で医薬品の標的となるのは多くの場合、タンパク質であり、医薬品とタンパク質との特異的な結合が薬効をもたらす。したがって、タンパク質の立体構造から得られる情報は、医薬品の開発、改良、および製造にとって極めて重要である。取扱の容易なタンパク質を例題として選び、発現、精製、および結晶化を行うことによって、X線結晶構造解析に必要な基礎的な技術と、得られた立体構造に基づく種々の解析手法を習得する。 (ディプロマ・ポリシー:7,8,10)

·到達目標(SBO)

- 1. 組換えタンパク質を発現させ、精製することができる。
- 2. 核酸・タンパク質の分子量の測定法を理解し、実施できる。
- 3. 生体高分子の結晶化原理を理解し、実施できる。 (☆)
- 4. 生体高分子の結晶構造解析について理解し、実施できる。 (☆)
- 5. 生体高分子の立体非構造を可視化し、リガンドとの三次元的な相互作用について説明できる。
- 5. (☆)
- 6. 分子動力学計算の原理を理解し、正しく実行できる。(☆)
- 7. 生体高分子の構造に基づき熱力学量を見積ることができる。 (☆)
- 8. プログラミングの基礎を理解し、簡単なプログラムを作成することができる。(☆)

コマ数	講座・分野	担当教員	講義内容/到達目標
60	構造生物薬学分野	野中 孝昌 教授	タンパク質の立体構造解析 1. X線結晶構造解析によりタンパク質の立体構造を明らかにできる。 2. バイオインフォマティクス全般について概説できる。 3. タンパク質の立体構造から可能な限りの情報を引き出すことができる。 4. タンパク質の立体構造についてプレゼンテーションできる。
60	構造生物薬学分野	阪本 泰光 准教授	創薬や食品工業上で重要なタンパク質をターゲットとして大量発現系の構築、精製したタンパク質を利用した機能解析およびリガンド等との複合体や変異体のX線結晶構造解析を行う。得られた情報を基に立体構造と機能の相関について議論、考察し外部に発信することによって、自ら研究計画を立案、実行し問題を解決する能力を身につけ、社会に貢献できる薬剤師としての基礎を形成する。 1. 代謝経路と標的分子の関係について説明できる。 2. 生理的機能と生体高分子の構造の関係について説

				明できる。 3. 標的分子の構造と創薬について説明できる。 4. 生体高分子の構造に基づく創薬を行うための基礎的研究法を主体的に実施することができる。 5. 様々な研究を客観的に評価することができる。 6. 研究成果をまとめ、発表することができる。 7. 薬学・医学に関する簡単なソフトウェアを作ることができる。
60	構造生物薬学分野	毛塚	雄一郎 助教	創薬上重要なタンパク質を発現させるための系を構築し、大量調製の後、機能および立体構造解析を実施する。必要に応じて、これらタンパク質の機能を制御する化合物を探索する。得られた結果を考える。論文作成やプレゼンテーションを通して情報を発信する技術を身に付ける。 1. 組換えタンパク質を調製することができる。 2. 酵素活性を測定することができる。 3. タンパク質の結晶構造解析を実施することができる。 4. タンパク質の構造と機能について考察することができる。 5. 化合物スクリーニングのアッセイ系について理解できる。 6. 研究の成果をまとめ、発表することができる。

· 教科書·参考書等(教: 教科書 参: 参考書 推: 推薦図書)

	書籍名	著者名	発行所	発行年
参	構造生物学:原子構造からみ た生命現象の営み	 樋口 芳樹、中川 敦史	共立出版	2010
参	タンパク質計算科学:基礎と 創薬への応用	神谷 成敏 他	共立出版	2009
参	実験化学講座 11 物質の構造 Ⅲ「回折」	日本化学会編	丸善丸善	2006
参	タンパク質の立体構造入門	藤博幸	講談社	2010

使用区分	機器・器具の名称	台数	使用目的
実習	プロジェクター (ACER、H5360)	1	スライドの投影のため
実習	高輝度X線発生装置(リガク)	1	X線回折実験
実習	防X線カバー(リガク)	1	X線回折実験
実習	空冷循環式送水装置(リガク)	1	X線回折実験
実習	単結晶 X 線構造解析装置(リガク、R-AXIS- RAPID ii)	1	X線回折実験
実習	4℃チャンバー(窓付)(島津理化)	1	結晶保存
実習	試料観察用CCDカメラ(オリンパス)	1	結晶観察
実習	デジタル一眼レフカメラ(Canon、EOS Kiss X3)	1	結晶観察
実習	超低温フリーザー(サンヨー、MDF-C8V)	1	試料保存
実習	マイクロ冷却遠心機(久保田商事、 Model3700)	1	試料調製
実習	超純水装置(ザルトリウス、アリウム 611VF)	1	試料調製
実習	高速冷却遠心機(日立)	1	試料調製
実習	製氷機(ホシザキ、FM-120F)	1	試料冷却
実習	ドラフトチャンバー(島津理化、CBR-Sc15- F)	1	排気処理
実習	DNA シーケンサー (ABI、3130xI-200)	1	DNA シーケンス解析
実習	パソコン (SONY、VPCEA2AFJ)	10	データ解析
実習	クロマトグラフィーシステム(Bio-Rad、NGC Scout 10 Plus)	1	タンパク質精製
実習	バイオシェーカー(タイテック)	3	宿主培養

卒業研究 1(分析化学分野)

責任者・コーディネーター

分析化学分野 藤本 康之 准教授

教育成果(アウトカム)

生体を構成する分子の役割に着目し、癌や生活習慣病などの疾患の予防や治療の基礎となる現象の解明を目的とする研究を行う。細胞生物学的手法および遺伝子機能解析によって、がん細胞の細胞内情報伝達経路の制御のメカニズムを明らかにすることで、がん細胞の増殖の制御を目標とする研究を行う。遺伝子工学を応用することによって、大腸菌や培養細胞に薬物標的タンパク質を発現させ、医薬品候補等の化合物との相互作用を解析する。また、これを新規分析技術の開発にも役立てる。これらの研究によって、医薬品の作用機構解明や分子標的の探索、医薬品候補化合物のスクリーニング等をめざす。 (ディプロマ・ポリシー:7,8)

·到達目標(SBO)

- 1. 研究テーマに関連した情報収集(文献検索等)、研究領域の全体的な理解、問題点の抽出ができる。
- 2. 細胞内情報伝達系の概要を理解し、疾患発症のしくみと関連づけて説明することができる。
- 3. 遺伝子発現とその制御のしくみを理解し、疾患発症のしくみと関連づけて説明することができる。
- 4. インターネット検索によって、ゲノム情報等の遺伝子関連情報を収集し、研究に活用することができる。
- 5. 遺伝子工学技術と分析化学的技術を理解し、研究に役立てることができる。
- 6. 研究テーマを理解し、実験計画の立案、実験の実施、実験結果の正確な記録ができる。
- 7. 実験結果を合理的に解釈し、論理的に説明することができる。
- 8. 研究成果をまとめ、発表することができる。

コマ数	講座・分野	担当教員	講義内容/到達目標
60	分析化学分野	藤本 康之 准教授	組換え体タンパク質と薬物との操作用解析、および 新規分析技法の開発 1. 大腸菌や培養細胞に発現させた組換え体タンパク 質と薬物との相互作用を調べることによって、医薬 品と標的タンパク質の結合解析やスクリーニング系 の開発を行う。 2. 生化学・分子生物学等の手法を用いた新たな分析 手法の開発を試みる。
60	分析化学分野	牛島 弘雅 助教	がん細胞増殖の基盤となる分子メカニズムの解析 1. がん細胞の細胞内情報伝達経路の制御に関する分子生物学的研究を行い、医薬品の作用機構の解明に 役立てるとともに創薬に向けて新たな分子標的を探索する。

· 教科書·参考書等(教:教科書 参:参考書 推:推薦図書)

	書籍名	著者名	発行所	発行年
参	ヴォート生化学 第3版(上)	田宮 信雄 他 訳	東京化学同人	2005
参	ヒトの分子遺伝学 第3版	Strachan 他 村松 正實、 木南 凌 監訳	メテ [*] ィカル・サイエンス・イ ンタ-ナショナル	2005
参	Essential 細胞生物学 原著第3版 訳書	B. Alberts 他	南江堂	2011
参	生化学辞典 第4版	大島 泰郎 他 編	東京化学同人	2007

使用区分	機器・器具の名称	台数	使用目的
使用区分	機器・器具の名称	台数	使用目的
実習	サーマルサイクラー	4	PCR 反応
実習	核酸用電気泳動装置 Mupid2-Plus (アドバンス、M-2P)	3	核酸電気泳動
実習	ゲル撮影装置(TOYOBO、FAS-III)	1	DNA 電気泳動のゲルイメー ジ撮影
実習	ピペットマン(ギルソン、P1000, P200, P20)	10	溶液サンプルの分取
実習	冷却遠心機(TOMY、MX-150)	1	溶液サンプルの遠心
実習	クリーンベンチ(HITACHI、PCV-1304ANG3)	1	細胞の培養

卒業研究 1(機能生化学分野)

責任者・コーディネーター

機能生化学分野 中西 真弓 教授

・教育成果(アウトカム)

生物の発生・分化や生命の維持は、無数の生化学反応により成り立っており、酵素は化学反応の主役である。酵素に変異が入ることによる活性の変化が、病気の原因となっている場合も多く、酵素は創薬の標的となる。卒業研究1では、タンパク質の定量、酵素活性の測定などの実験を通して、器具や試薬の基本的取り扱い方、実験を計画し実行する力を身につけることができる。また、必要な情報を論文検索などにより収集することにより、研究の背景や意義を理解できるようになる。さらに、生物学の重要分野に関して知識をまとめて、わかりやすく発表することにより、疾患や薬物がはたらく機構が理解できるようになるとともに、プレゼンテーション能力とコミュニケーション能力の基礎が形成できる。

·到達目標(SBO)

- 1. 文献検索により薬学研究に必要な情報を収集できる。
- 2. 生化学や細胞生物学に関する英語論文などの内容を説明できる。
- 3. 実験器具や試薬の基本的な取り扱いができる。
- 4. 実験計画を立案、実施し、得たデータを論理的に考察することができる。
- 5. 実験上の問題点を見出し、解決に向けて取組むことができる。
- 6. これまでに学んだ知識をまとめて、わかりやすく説明することができる。
- 7. タンパク質を定量することができる。

·実習日程

コマ数	講座・分野	担	3当教員	講義内容/到達目標
60	機能生化学分野	西	真弓 教授	研究室におけるマナーを身につける。ATP 合成酵素など代表的な酵素の活性を測定する基本的手法を修得する。研究に必要な知識、背景と実験データをまとめて発表すすることにより、論理的な考え方やプレゼンテーション能力を身につける。本研究により、以下のことを修得できる。 1. 文献検索により薬学研究に必要な情報を収集できる。 2. 生化学や細胞生物学に関する英語論文などの内容を説明できる。 3. 実験器具や試薬の基本的な取り扱いができる。4. 実験計画を立案、実施し、得たデータを論理的に考察することができる。 5. 実験上の問題点を見出し、解決に向けて取組むことができる。 6. これまでに学んだ知識をまとめて、わかりやすく説明することができる。 7. タンパク質を定量することができる。

60	機能生化学分野	關谷	瑞樹 助教	研究に必要な原著論文を検索、読解し、情報を収集する。タンパク質の定量分析により、機器の基本的な取扱を習得し、データの整理と評価を行う。さらに、酵素活性や細菌の増殖を阻害する薬物のスクリーニングを行う。データをまとめて発表し、質疑応答を通して理解を深める。本研究により、以下のことを修得できる。 到達目標は同上
60	機能生化学分野	後藤	奈緒美 助教	卒業研究1に必要な知識や背景のまとめを行う。骨吸収を抑制する化合物をスクリーニングする実験機の構築を目指して、細胞培養や遺伝子導入などを行い、細胞生物学的手法を習得する。実験結果をまとめて発表することで、論理的な思考力とプレゼンテーション能力を身につける。本研究により、以下のことを修得できる。 到達目標は同上

·教科書·参考書等(教:教科書 参:参考書 推:推薦図書)

	書籍名	著者名	発行所	発行年
参	コンパス生化学	前田 正知、浅野 真司 編 南江	江堂	2015
参	レーニンジャーの新生化学 (上・下)第5版	中山 和久 編 広川	川書店	2010
参	エッセンシャル細胞生物学 原書第3版	中村 桂子、松原 謙一 監 南河	江堂	2013
推	Handbook of ATPases: biochemistry, cell biology, pathophysiology		ey-VCH Verlag bH & Co. KGaA	2004

使用区分	機器・器具の名称	台数	使用目的
実習	パソコン(DELL、Inspiron1545)	5	英語文献検索、データ解析
実習	研究用ステージ固定式正立顕微鏡	1	タンパク質の一分子観察
実習	超高速デジタルビデオカメラシステム	1	タンパク質の一分子観察撮影
実習	ライブセルタイムラプスシステム	1	生細胞のライブイメージング
実習	分離用超遠心機	2	細胞抽出物の分離・精製
実習	In Vitro 遺伝子導入装置	1	細胞への遺伝子導入
実習	グロースチャンバー	1	微生物の培養

実習	画像解析装置(フジフイルム、LAS-3000)	1	タンパク質の検出
実習	マルチプレートリーダー(Wako TECAN、Infinite F500)	1	転写因子の活性測定(化学発 光)
実習	マルチプレートリーダー(モレキュラーデバイス、SPECTRA MAX 190)	1	タンパク質の定量、酵素活性 測定(吸光)
実習	DNA シーケンサー (ABI、3130xI-200)	1	塩基配列の確認
実習	DNA シーケンサー (ABI、310)	1	塩基配列の確認
実習	蛍光光度計(日立、F-2500)	1	プロトンポンプ輸送活性の測 定
実習	分光光度計(日立、U-2810)	1	ATPase 活性の測定、タンパ ク質および核酸の定量
実習	共焦点レーザー顕微鏡(オリンパス、FV- 1000)	1	蛍光標識した細胞の観察
実習	共焦点顕微鏡(Carl Zeiss、LSM510 Meta)	1	蛍光標識した細胞の観察
実習	PCR サーマルサイクラー(AB、GeneAmp 9700)	2	PCR、酵素反応
実習	細胞用 CO2 incubator(三洋電機バイオシステム、MOC-36AIC)	2	哺乳動物細胞の培養
実習	卓上クリーンベンチ(三洋、MCV710ATS)	1	微生物の培養操作

卒業研究 1(生体防御学分野)

責任者・コーディネーター

生体防御学分野 大橋 綾子 教授

・教育成果(アウトカム)

生命の設計図「ゲノム」がどのように個体での生命活動に活かされているのかを理解する上で、モデル生物は非常に価値ある研究材料である。またその遺伝子解析は、個人の遺伝情報に基づくテーラーメード医療などの基礎となる概念を習熟する為にも重要である。当分野では、微生物やモデル生物を用いた研究を通じて、英語論文や生物情報データベースからの情報収集、実験計画の立案、遺伝学的・生化学的・細胞生物学的手法を駆使した実験の実施、結果に対する考察や討論、といった生物系薬学の研究に必要な基礎的な知識・手法を習得する。

卒業研究1では、はじめに分野(旧講座)の先輩の卒業論文の精読を通じて、研究の基本的な進め方や卒業論文の構成を理解できる力が身につく。次に、課題実験に取り組み、一連の実験の流れを体験することで、研究による問題解決の手法が身につく。発表会により、情報の共有に必要なプレゼンテーション技能やコミュニケーション能力が養われる。卒業研究2にもつながる研究テーマは、分野の研究領域の中から学生の関心・興味を考慮して決定する。(ディプロマ・ポリシー:7,8,9,10)

到達目標(SBO)

- 1. 医学・薬学研究における実験動物の意義を理解し、説明できる。
- 2. 薬学関連専門分野の英語文献を読解し、その内容を理解できる。 (☆)
- 3. 研究課題を解決するための実験計画を立案することができる。(☆)
- 4. 実験ノートを適切に作成し、管理することができる。 (☆)
- 5. 滅菌、消毒、無菌操作を適切に行うことができる。
- 6. 実験試薬、培地を適切に調製し、取り扱うことができる。 (☆)
- 7. 代表的な実験動物を適正に取り扱うことができる。 (☆)
- 8. 顕微鏡を用いて、実験動物の組織や細胞を観察できる。
- 9. 遺伝子改変動物の遺伝子型の判定法を説明できる。 (☆)
- 10. バイオインフォーマティクスについて説明できる。(☆)
- 11. 実験から得たデータを考察し、発表することができる。(☆)
- 12. 他者や自らの発表に対して、適切な質疑応答ができる。
- 13. 研究成果報告書を作成できる。(☆)

コマ数	講座・分野	担当教員	講義内容/到達目標	
60	生体防御学分野	大橋 綾子 教授	モデル生物の防御応答や環境適応に関わる遺伝子群を、変異体や各種遺伝子ライブラリーを用いてスクリーニングすること等を通じて、遺伝子の機能についての新しい知見を得る。更に、バイオインフォーマティクスに対する知識と技術を学ぶことで、得られた変異体や遺伝子に関する情報を収集・統合する。 1. 医学・薬学研究における実験動物の意義を理解し、説明できる。 2. 薬学関連専門分野の英語文献を読解し、その内容	

	Т	T	,
			を理解できる。(☆) 3. 研究課題を解決するための実験計画を立案することができる。(☆) 4. 実験ノートを適切に作成し、管理することができる。(☆) 5. 滅菌、消毒、無菌操作を適切に行うことができる。 6. 実験試薬、培地を適切に調製し、取り扱うことができる。(☆) 7. 代表的な実験動物を適正に取り扱うことができる。(☆) 8. 顕微鏡を用いて、実験動物の組織や細胞を観察できる。 9. 遺伝子改変動物の遺伝子型の判定法を説明できる。(☆) 10. バイオインフォーマティクスについて説明できる。(☆) 11. 実験から得たデータを考察し、発表することができる。(☆) 12. 他者や自らの発表に対して、適切な質疑応答ができる。 13. 研究成果報告書を作成できる。(☆)
60	生体防御学分野	白石 博久 准教授	環境ストレスや加齢に応じて変動するモデル生物の細胞内オルガネラに着目し、その形成/消失に関わる遺伝子群の役割について、遺伝学的・生化学的・分子生物学的・細胞生物学的手法とバイオインフォーマティクスを組み合わせた解析法を学ぶ。更に、生体の恒常性維持における環境要因と遺伝的要因の関係について学ぶ。 到達目標:同上
60	生体防御学分野	丹治 貴博 助教	感染防御や飢餓応答に関連する遺伝子のオルガネラ 形成・崩壊への関わりについて、モデル生物の変異 体や RNAi 干渉法を用いた解析法を学ぶ。更に、遺伝 子間の相互作用についての新しい知見を得るため の、トランスジェニック体などの遺伝学的・分子生 物学的技術を取り入れた解析法を学ぶ。 到達目標:同上
60	生体防御学分野	錦織 健児 助教	感染防御もしくは環境応答に関連する遺伝子を導入したトランスジェニック体における、生体内分子の動態やオルガネラ機能の変化について学ぶ。また、微生物とモデル生物間にみられる、防御システムを含む様々な相互作用についての知見を得る。更に、生化学的分析技術を組み合わせた広範な解析法について学ぶ。 到達目標:同上

· 教科書·参考書等(教: 教科書 参: 参考書 推: 推薦図書)

	書籍名	著者名	発行所	発行年
参	ヒトの分子遺伝学 第4版	Strachan 他 村松 正實、 木南 凌 監訳	メディカル・サイエンス・イン ターナショナル	2011
参	 細胞の分子生物学 第5版 	Alberts 他 中村 桂子、松 原謙一 他 監修	ニュートンプレス	2010
参	線虫ラボマニュアル	三谷 昌平 編	シュプリンガ・フェアラ-ク 東京	2003
参	研究をささえるモデル生物: 実験室いきものガイド	吉川 寛、堀 寛 編	化学同人	2009
参	The Nematode Caenorhabditis elegans	William B. Wood 他編	Cold Spring Harbor Laboratory	1988
参	C. elegans II	Donald L. Riddle 他 編	Cold Spring Harbor Laboratory	1997

使用区分	機器・器具の名称	台数	使用目的
実習	SXZ10 用落射蛍光装置(オリンパス、SXZ2- RFA10-2)	1	試料の蛍光観察のため
実習	実体顕微鏡システム(オリンハ°ス、SZX10-3151)	1	試料の蛍光観察のため
実習	実体顕微鏡SZX12(オリンパス、SZX16)	1	試料の蛍光観察のため
実習	インキュベータ(三洋電機、M I R-253)	1	生物試料の飼育のため
実習	ク-ルインキュベ-タ-(アス [*] ワン、 C K ―0444―040)	2	生物試料の飼育のため
実習	オートクレーブ (トミー精工、SX-500)	1	培地の滅菌のため
実習	サーマルサイクラー(アプ [°] ライト゛ハ゛イオシステムス゛、veriti)	1	遺伝子の増幅のため
実習	PCR/96WELL/GeneAmp9700G(タカラバイオ、 GeneAmp9700G)	1	遺伝子の増幅のため
実習	多用途小型遠心機(冷却)CF16RX(日立、 CF16RX)	1	試料の遠心分離のため
実習	電子天秤(メトラートレド、AB-135S·FACT)	1	試薬の秤量のため
実習	電子天秤(島津理化、EBL300)	1	試薬の秤量のため

実習	UV イルミネ-タ ケ゛ル撮影装置(東洋紡、FAS-Ⅲ)	1	核酸電気泳動の画像取得のため
実習	-80 度フリ-ザ- (三洋電機バイオシステム、MDF- U52V)	1	試料の保存のため
実習	フリーザ*20 度(三洋電機バイオシステム、MDF-136 +MDF-334)	1	試料の保存のため
実習	冷蔵庫(三洋電機バイオシステム、SR-261J)	1	試料・試薬の保存のため
実習	プレハブ恒温室(島津理化、特)	1	試料の恒温観察のため
実習	安全キャビネット(日立、SCV-1606EC II AB)	1	微生物の取り扱いのため
実習	ス-パーモバイル LED プロジェクタ-(TAXAN、KG- PL021X)	1	セミナー等のため
実習	製氷機(ホシザキ、FM-120F)	1	製氷のため
実習	超純水精製機(日本ミリポア、ElixUV5)	1	純水の調製のため
実習	DNAシーケンサー (ABI、3130xI-200)	1	塩基配列の解析のため
実習	卓上微量高速遠心機(日立、CT15RE、T15A61)	1	試料の遠心分離のため
実習	液体窒素貯蔵容器(ケニス、3-318-670)	1	液体窒素の貯蔵
実習	液体窒素容器(三洋電機バイオシステム、 XC47/11-6)	1	液体窒素・低温試料の貯蔵
実習	パソコン	11	実験データの取り扱いのため
実習	Plate Spin II プレ-ト専用遠心機(久保田商事、Plate Spin II 3500rpm)	1	プレート試料の遠心分離
実習	落射蛍光顕微鏡一式(オリンパ ² ス、BX51N-34- FLD-1)	1	試料の高倍観察のため
実習	落射蛍光装置(オリンパス、BX2N-FL-1)	1	蛍光観察のため
実習	落射蛍光装置(実体顕微鏡用)(オリンパス、 SZX16-6331FL)	1	蛍光観察のため
実習	蛍光高級顕微鏡(倒立)(オリンパ [°] ス、DP-70+ metamorph)	1	顕微注射・高倍観察のため
実習	倒立型ル-チン顕微鏡(オリンパ [°] ス、CKX31N- 11PHP)	1	細胞の観察
実習	ナリシゲインジェクター(ナリシケ゛、インジェクター)	1	顕微注射のため
実習	小型電源装置マイパワ-Ⅱ500 (アト-、AE-8155)	1	電気泳動時の電源のため
		· · · · · · · · · · · · · · · · · · ·	

	T	ı	T .
実習	超音波細胞破砕機(タイテック、VP-5s)	1	試料の超音波破砕のため
実習	PHメーター(島津理化、D-55T)	1	試薬の調製のため
実習	ケ゛ルト゛ライヤー(エアフ゛ラウン、ユニヘ゜ンス 3740301)	1	ゲル試料の保存のため
実習	シェーカー(タイテック、NR-1)	2	試料の振盪のため
実習	乾燥機(島津理化、STAC-N400M)	1	実験器具の乾燥のため
実習	恒温乾燥機(島津理化、STAC-P400M)	1	実験器具の乾燥のため
実習	ハイフ゛リリンカ- UVP(フナコシ、HL-2000)	1	UV照射のため
実習	ドラフトチャンバー(島津理化、CBR-Sc15-F)	1	揮発試薬の取扱いのため
実習	クリーンベンチ(島津理化、SCB-1800AS)	1	細胞の取扱いのため
実習	クリーンヘ・ンチ(三洋電機ハ・イオシステム、MCV- 91BNF)	1	細胞の取扱いのため
実習	画像解析装置(フジフィルム、LAS-3000)	1	画像解析のため
実習	共焦点レ-ザ-顕微鏡(暗室込)(オリンパス、FV- 1000)	1	蛍光の微細構造の観察のため
実習	恒温式 2 連ジャイアンツスラプゲル電気泳動装置(日本エイドー、NA-1118)	2	試料の電気泳動のため
実習	ホライズブロット (ATTO、AE-6687)	2	タンパク質試料の膜への転写の ため
実習	ホライズブロット・2M(ATTO、AE-6677)	1	タンパク質試料の膜への転写の ため
実習	4℃チャンバー(窓付)	1	低温作業のため
実習	CO2 インキュベーター(SANYO、MCO- 5AC(UV))	1	細胞の培養のため
実習	インビトロシェーカー(タイテック、Wabe- SI)	1	試料の震盪のため
実習	微量用遠心濃縮機(トミー精工、MV-100 特型)	1	試料の濃縮のため
実習	デジタルマイクロスコープ一式(キーエンス、 VHX-1000/1100 他)	1	試料の高倍率観察・記録のた め
実習	ペリスタ・バイオミニポンプ(アトー、AC- 2120)	1	試薬液送達、濃度勾配形成のため
実習	シェーカー (タイテック、NR-3)	1	試料の振盪のため

実習	顕微鏡カラーデジタルカメラ(オリンパス、 DP71)	1	高倍率顕微鏡画像の撮影のため
実習	CCD カメラ制御用ソフト(オリンパス、 Metamorph)	1	DP71 を用いた画像取得の制御、画像解析のため
実習	インジェクターコントローラー(オリンパス、 ONU-31P, ONU-TOP)	1	顕微注入のため
実習	フェムトジェット(エッペンドルフ、 FemtoJet)	1	顕微注入のため
実習	マイクロピペット製作器(ナリシゲ、PC-10)	1	顕微注入のため
実習	微量用遠心濃縮機(トミー精工、MV-100 特型)	1	試料の濃縮のため
実習	デジタルマイクロスコープ一式(キーエンス、 VHX-700FSP 他)	1	試料の簡便な高倍率観察のため
実習	吸光度計(ウシオ電機、Picoscope)	1	タンパク質の定量のため

卒業研究 1(神経科学分野)

責任者・コーディネーター

神経科学分野 駒野 宏人 教授

・教育成果(アウトカム)

自らの研究課題に意欲的に取り組むことができる。生物系薬学に関する研究を実施するために必要となる基礎的な知識、技能、態度を習得する。実際の研究課題を通じて、実験計画の立案の仕方、背景となる研究分野の情報を収集する手段、実験記録の書き方、研究の進め方、基礎的な知識・技術を学ぶ。また、研究結果をまとめて発表と討論を実施し、発表のための基礎的なスキル、および、グループ討論を通して研究テーマの意義や問題点、その解決方法を考察する能力を養う。

(ディプロマ・ポリシー:7.8.9)

·到達目標(SBO)

- 1. 目標を決め、目標に向かって意欲的に行動できる。(☆)
- 2. 生化学、分子生物学、細胞生物学、神経化学に関する基礎的な実験技術を習得する。
- 3. 実験記録の書き方、実験の進め方、結果の評価法を習得する。
- 4. 定量の意味を理解できる。
- 5. 実験関連分野の文献を探し、その内容を理解できる。
- 6. 得られた実験結果に関して考察し、次の実験系を考えることができる。
- 7. 得られて実験結果に関して、口頭発表の仕方、質疑応答の仕方を習得する。 (☆)

コマ数	講座・分野	担当教員	講義内容/到達目標		
60	神経科学分野	駒野 宏人 教授	実習を通じて意欲的に行動する脳科学を学ぶ。また、基本的な実験記録の書き方、実験結果のプレゼンテーションの仕方やディスカッションの方法を学ぶ。 1. 目標を決め、目標に向かって意欲的に行動できる。(☆) 2. 実験記録の書き方、実験の進め方、結果の評価法を習得する。 3. 定量の意味を理解できる。 4. 得られた実験結果に関して考察し、次の実験系を考えることができる。 5. 得られて実験結果に関して、口頭発表の仕方、質疑応答の仕方を習得する。(☆)		
60	神経科学分野	藤田 融 助教	タンパク定量を通じて定量に関する基礎的な知識、考え方を学ぶ。また、蛋白の電気泳動などの基礎的な生化学の技術を学ぶ。 1. 目標を決め、目標に向かって意欲的に行動できる。(☆) 2. 生化学、分子生物学、細胞生物学、神経化学に関する基礎的な実験技術を習得する。 3. 実験記録の書き方、実験の進め方、結果の評価法		

	を習得する。 4. 定量の意味を理解できる。 5. 実験関連分野の文献を探し、その内容を理解できる。 6. 得られた実験結果に関して考察し、次の実験系を考えることができる。 7. 得られて実験結果に関して、口頭発表の仕方、質疑応答の仕方を習得する。(☆)
--	---

· 教科書·参考書等(教:教科書 参:参考書 推:推薦図書)

	書籍名	著者名	発行所	発行年	
参	病気がみえる vol.7 脳・神 経	医療情報科学研究所編集	メディックメディア	2011	

使用区分	機器・器具の名称		使用目的
実習	パソコン(パナソニック、CF-Y7BWHAJS)	2	ゼミで使用
実習	プロジェクター(エプソン・EMP-1700)	1	ゼミで使用
実習	画像解析装置(フジフイルム・LAS−3000) 共有研究室 1	1	ウエスタンブロットのシグナ ルの検出に使用
実習	超純水精製機(日本ミリポア・ElixUV5)共有研 究室 2	1	試料の調製に用いる
実習	倒立蛍光顕微鏡(オリンパス・IX81)共有研究 室 2	1	細胞観察
実習	共焦点レーザー顕微鏡(オリンパス・FV- 1000)共有研究室 2	1	細胞観察
実習	冷蔵庫(三洋電機バイオシステム・MPR1410)	1	試料・試薬の保存
実習	薬用冷蔵庫(4℃)(三洋電機バイオシステム・ MPR312D)	1	試料・試薬の保存
実習	バイオメディカルフリーザー(-20℃)(三洋電機 バイオシステム・MDF-U442)	1	試料・試薬の保存
実習	冷蔵庫 -80℃(三洋電機バイオシステム・ MPR312D)	1	試料・試薬の保存
実習	ブロックインキュベーター(タイテック・CTU-N)	2	DNA 切断、酵素処理に用いる
実習	冷却低速遠心機(トミー精工・EX-136)	1	細胞回収

実習	ミクロ遠心機(日立・CR15RXII)	1	試料の遠心、分離
実習	FAS-Ⅲ フルシステム(東洋紡・FAS-303)	1	ゲル撮影
実習	電子天秤(SHIMADZU·UW620H)	1	試薬秤量
実習	電子天秤 (SHIMADZU·AUW220D)	1	試薬秤量
実習	pH メーター(ベックマンコールター・φ360- S/FACT)	1	試薬の pH を測定
実習	分光光度計(ベックマンコールター・DU730)	1	タンパク質・DNA 定量
実習	CO2 インキュベーター(三洋電機バイオシステム・MCO-175)	1	細胞培養
実習	クリーンベンチ(日本エアー・SCB1300AS)	2	細胞培養
実習	顕微鏡(オリンパス・IX71N)	1	細胞観察
実習	オートクレーブ(トミー精工・ES-315)	1	器具の滅菌および細胞・大腸 菌の滅菌に用いる
実習	プリンター(FUJI XEROX・C3250)	1	ゼミの資料作成・実験結果印刷
実習	ホモジナイザー(東京理化・ポリトロン PT3100)	1	細胞破砕
実習	超音波細胞破砕機	1	細胞破砕
実習	サイド実験台 1200(島津理化)	3	実験操作を行う
実習	メディウムサッカー(池本理化・174-328- 01)	1	培地の吸引
実習	iBLOT	1	トランスファー装置(ウエス タンブロットに用いる)
実習	リアルタイム PCR(ABI・PCR システム 7500-1) 共有研究室 2	1	mRNA 量を測定
講義	製氷機(ホシザキ・FM-120F)共有研究室 2	1	試料を保冷する
実習	培養シェーカー(タイテック大型 2 段)共有研 究室 2	1	大腸菌を培養する
実習	シェーカー(EYELA MMS-310)	1	試料を振盪する
実習	超低温フリーザー	1	試料・試薬の保存
実習	顕微鏡画像編集用端末パソコン	1	顕微鏡画像の保存、図の作成

実習 ノートパソコン VersaPro (PC-VK22TFWD4SZN) 1 図の作成、発表

卒業研究 1(分子細胞薬理学分野)

責任者・コーディネーター

分子細胞薬理学分野 弘瀬 雅教 教授

教育成果(アウトカム)

薬理学は、生命体に対する薬物の作用を、分子から生命個体までを用いて明らかにすると共に、それらを統合し協調する関係の仕組みまで踏み込む学問領域である。分子細胞薬理学分野では、循環系薬理学及びその関連分野を研究の支柱にし、生命体の神経調節および循環系基盤疾患となる代謝症候群を見据えた基礎研究や創薬研究を行う。薬理学研究に際し、基本的循環機能の測定をもとに、メカノストレス負荷や電気生理・薬理学やイメージングおよび分子薬理学および分子生理学的研究手法を用いる。卒業研究のテーマは当分野の研究分野と各配属学生の興味、適性を勘案し、相談の上、決定する。

- 1. 物理化学、有機化学、生化学、機能形態学、薬理学等、4年次までに学習した基礎薬学の内容を復習しつつ、培養細胞から丸ごと個体における薬物の作用を観察することで、基礎薬学の知識の統合が可能となる。
- 2. 基礎薬学および医療薬学の知識を応用し研究の立案・計画・実施・取りまとめを行うことで、科学的視点を持ち自ら考え行動できる人材になる。 (ディプロマ・ポリシー: 2,7,8)

·到達目標(SBO)

- 1. 研究倫理を理解し、その重要性を説明できる。(☆)
- 2. 研究における記録の重要性を理解し、記録の仕方を説明できる。 (☆)
- 3. 卒業論文の書き方を概説できる。
- 4. 課題を理解し、その達成に向けて積極的に取り組む。
- 5. 課題達成のために、他者の意見を理解し、討論する能力を醸成する。
- 6. 研究活動に関わる諸規則を遵守し、倫理に配慮して研究に取り組む。
- 7. 課題に関連するこれまでの研究成果を調査・評価し、これまでの発表論文を読解できる。
- 8. 実験計画を立案し実験系を組み、実験を実施できる。
- 9. 実験に用いる薬品、器具、機器を正しく取扱い、管理する。
- 10. 研究の結果を適切な統計処理法で解析し、まとめることができる。
- 11. 研究の成果を発表し、適切に質疑応答ができる。また研究の成果を報告書や卒業論文としてまとめることができる。
- 12. 心臓・血管・代謝系疾患治療薬の探索、合成、構造活性相関、薬理作用、臨床応用、体内動態、 副作用、相互作用などについて調査し、発表できる。(☆)
- 13. 本邦における難治性循環系疾患の治療方針を理解し、新たな治療法確立への課題や解決策について議論できる(☆)

・実習日程

コマ数	講座・分野	担当教員	講義内容/到達目標
60	分子細胞薬理学分野	弘瀬 雅教 教授 教 助教	生体に影響を与える天然物由来成分の薬効解析を行い、創薬理学研究を理解する。薬物作用を動物らに細胞を用い機能学的に、おら分子生物学的に解明する。個体から分子生物学的に解明する。個体からなる制態構を明らかにする。特に循環器系疾患の中の法等の計算を応用して薬物による制御機構を明らかにする。1. 基礎から臨床に至る研究の目的と役割について説明できる。2. 研究には自立と独創性が求められていることを理解する。3. 現象を客観的に捉える観察眼をもち、論理的に思考できる。4. 新たな課題にチャレンジする創造的精神をもてるよう努力をきる。5. 正義性、社会性、誠実性に配慮し、法規範を遵守して研究課題に解決できる。5. 正義性、社会性、武実性に配慮し、法規範を適けに活用して問題を解決すべき問題点を抽出し、研究課題達成のために解決すべき問題点を抽出し、研究問題を介めに解決すべき問題点を抽出し、研究問題を介めの知識や技能を総合的に活用して問題を解決すべき問題点を抽出し、研究の表別の大きる。9. 研究の各プロセスを適切に記録し、結果を考察する。10. 研究の各プロセスを適切に記録し、結果を考察する。11. 研究成果の効果的なプレゼンテーションを行い、適切な質疑応答ができる。12. 研究成果を報告書や論文としてまとめることができる。
60	分子細胞薬理学分野	丹治(斉藤) 麻希 助教	難治性疾患である肺動脈性肺高血圧症の成因および進行における力学因子の役割や、力学刺激の受容と応答に関わる因子を明らかにすることで、同疾患の新たな治療戦略の提示を目指す。循環系の生理学・薬理学の理解を深めつつ、疾患モデル動物を用いた治療実験、組織・細胞レベルでの薬理学的解析を行う。 到達目標は同上

· 教科書·参考書等(教: 教科書 参: 参考書 推: 推薦図書)

	書籍名	著者名	発行所発行年	
参	詳解 薬理学	香月 博志、成田 年、川端 篤史 編	廣川書店 2015	

参	カラー版 ラング・デール薬 理学	樋口 宗史、前山 一隆 監 訳	西村書店	2011
参	機能形態学	櫻田 忍、櫻田 司 編	南江堂	2013
参	ぜんぶわかる人体解剖図	坂井 建雄、橋元 尚詞 著	成美堂出版	2014
参	Principles of pharmacology: the pathophysiologic basis of drug therapy 2nd ed.	David E. Golan et al., (ed.)	LIPINCOTT/ Williams & Wilkins	2008
参	Mechanosensitivity in Cells and Tissues Vol.1-6	Andre Kamkin, Irina Kiselva (ed.)	SPRINGER	2011
参	Cardiac electrophysiology : from cell to bedside 5th ed.	Douglas P. Zipes and Jose Jalife	SAUNDERS	2009
参	Optical Mapping of Cardiac Excitation and Arrhythmias	David Rosenbaum and Jose Jalife	SAUNDERS	2001
参	非侵襲・可視化技術ハンドブック:ナノ・バイオ・医療から情報システムまで	小川 誠二、上野 照剛 編	エヌ・ティエス	2007
参	Adipose Tissue in Health and Disease	James G. Granneman (ed.)	Wiley-VCH	2010
参	Pulmonary Hypertension(Lung Biology in Health and Disease)	Marc Humbert, Joseph P., III Lynch 編	Informa Healthcare	2009
推	4 Steps エクセル統計 第 4 版	柳井 久江 著	オーエムエス出版	2016

・特記事項・その他

実験動物や培養細胞を用いるため、長期に渉り根気強く責任感をもって実験を遂行すること

使用区分	機器・器具の名称	台数	使用目的
実習	MacLab 8 チャンネル	1	ラットの血圧測定のため
実習	Mac Lab 用 PC 及びレーザードプラ血流計	1	ラットの血圧・血流測定のため
実習	マウス用呼吸器	1	マウスの呼吸管理のため
実習	マスターフレックスポンプ	1	タイロード液潅流のため
実習	純水製造装置	1	タイロード液調製のため

実習	パッチクランプシステム	1	心筋の各種イオン電流の測定 のため
実習	プローブ式超音波細胞破砕機	1	細胞を破砕するため
実習	マイクロセンサ圧力計測システム	1	マウスの血圧測定のため
実習	電子天秤	1	試薬調製のため
実習	ランゲンドルフ用簡易電極マニピュレーター	1	電気刺激のため
実習	pH メータ	1	タイロード液等の pH 調整
実習	液晶プロジェクター	1	研究発表のため
実習	パソコン	5	薬理学シミュレーション実験・卒業 研究用
実習	低速冷却遠心機 himac CF7D2(日立)	1	遠心分離
実習	冷却装置付きマイクロ遠心機 TMA-200(トミー精機)	1	遠心分離
実習	バイオ用クリーンベンチ MCV-91-BNF(三洋電 機バイオシステム)	1	無菌操作
実習	クリーンベンチ MCV-131BNF(三洋電機バイオ システム)	1	無菌操作
実習	CO2 インキュベーター MCO-18AIC (UV) (三洋 電機バイオシステム)	1	細胞培養
実習	生化学用細胞伸展装置 ST-140 (ストレックス 社)	1	細胞への伸展刺激負荷
実習	位相差·蛍光顕微鏡+ plusDIC Axiovert40 (ZEISS)	1	細胞観察
実習	循環恒温水槽 NTT-20S(東京理化)	1	培養液・バッファー等の保温
実習	分光光度計 U-1800(日立)	1	吸光度測定
実習	ヌクレオフェクターシステム	1	培養細胞への遺伝子導入実験
実習	分離型ライトガイドセット		動物 in vivo 実験
講義	IC Card Gate2	1	学習資料印刷用
実習	中央実験台 1	2	生物学実験卓
実習	中央実験台用試薬棚	4	生物学実験卓
実習	天秤台	1	試薬秤量

実習	作業台	2	動物実験
実習	暗幕	1	光学マッピング
実習	パッチクランプ用ラック	1	パッチクランプ実験
実習	心電図・体温テレメトリーシステム	1	慢性的心電図測定
実習	ズーム式実体顕微鏡	1	動物 in vivo 実験
実習	超音波診断装置 Pro Sound	1	心機能測定
実習	心内心電図測定カテーテルシステム マウス用 一式	1	心臓不整脈誘発
実習	循環式アスピレータ	1	分子生物学実験
実習	PowerGen ホモジナイザー	1	組織のホモジナイズ
実習	UV トランスイルミネーター	1	電気泳動ゲルのバンド観察
実習	顕微鏡用デジタルカメラ	1	心臓手術の観察
実習	ブレインビジョン製光学マッピング装置	1	心臓不整脈の解析
実習	アトー ポンプ	1	パッチクランプ実験

卒業研究 1(臨床医化学分野)

責任者・コーディネーター

臨床医化学分野 那谷 耕司 教授

・教育成果(アウトカム)

臨床医化学分野における卒業研究では、糖尿病などの疾患に関して、その病態の解明、新たな治療法の開発をめざした基礎的研究を中心に研究を行う。卒業研究1では5、6年次での卒業研究に備え、培養細胞やマウス等の実験動物の取り扱い方法、生化学的、分子生物学的手法などの種々の基本的実験手技を習得する。また、実験計画の立案、実験結果の解釈について学ぶとともに、実験結果をわかりやすく発表し論文にまとめる技術についても学習することで、5、6年次での卒業研究を実施できるようになる。 (ディプロマ・ポリシー: 2, 5, 7, 8, 9, 10)

·到達目標(SBO)

- 1. 必要な薬学関連文献を選択し検索できる。
- 2. 薬学関連分野の英語文献の内容を簡潔に要約し、説明できる。 (☆)
- 3. 滅菌、消毒、無菌操作を適切に行うことができる。
- 4. 核酸、タンパク質について各種実験手法(酵素反応、PCR法、電気泳動)を実施できる。
- 5. 代表的な実験動物、遺伝子組換え生物の適正な取り扱いを理解できる。 (☆)
- 6. 実験から得た結果を科学的に考察し、記録としてまとめ、説明することができる。
- 7. 糖尿病研究などの現状について理解できる。 (☆)

コマ数	講座・分野	担当教員	講義内容/到達目標
60	臨床医化学分野	那谷 耕司 教授	遺伝子改変動物などの実験動物、培養細胞を用いて、糖尿病などの生活習慣病の病態解明、新たな治療法に開発を目指した基礎研究を中心に行う。この研究を通して糖尿病研究の現状などを理解するとともに、実験技法、実験結果のまとりの方で、研究者としての基礎を作る。 1.必要な薬学関連文献を選択し検索できる。 2.薬学関連分野の英語文献の内容を簡潔に要約し、説明できる。(☆)3.滅菌、消毒、無菌操作を適切に行うことができる。4.核酸、タンパク質について各種実験手法(酵素反応、PCR 法、電気泳動)を実施できる。5.代表的な実験動物、遺伝子組換え生物の適正な取り扱いを理解できる。(☆)6.実験から得た結果を科学的に考察し、記録としてまとめ、説明することができる。
60	臨床医化学分野	大橋 一晶 准教授	薬物の作用について、モデル生物を用いて分子生物 学的に解析を行う。実験結果から得られたデータの

				解釈などを研究発表やグループ討論で学ぶと共に、 卒業研究に関する口頭発表や論文作成法についても 学習する。 到達目標:同上
60	臨床医化学分野	髙橋	巌 助 :	インスリン産生膵β細胞の増殖、機能と糖鎖構造との関連性について、主に培養細胞を用いて解析を行う。糖尿病の発症機構については未知な点が多く、膵β細胞における糖鎖の役割を明らかにすることは、糖尿病の病態解明、新たな治療法の開発につながる。 到達目標:同上

· 教科書·参考書等(教: 教科書 参: 参考書 推: 推薦図書)

	書籍名	著者名	発行所	発行年
参	Essential 細胞生物学 原著第 4版 訳書	B. Alberts 他	南江堂	2016
参	糖尿病学	門脇 孝 他編	西村書店	2015
参	基礎から学ぶ遺伝子工学	田村隆明	羊土社	2017

使用区分	機器・器具の名称	台数	使用目的
実習	安全キャビネット	2	無菌操作
実習	4℃冷蔵ショーケース	1	試料の保存
実習	オートクレーブ	1	試薬・器具の滅菌
実習	ノートパソコン	5	英語文献検索
実習	電子天秤	1	試薬の秤量
実習	分析天秤	1	試薬の秤量
実習	冷却装置付きマイクロ遠心機	3	試料の遠心
実習	ドラフトチャンバー	1	試薬の調製
実習	バイオメディカルフリーザー	1	試料の保存
実習	CO2インキュベータ	2	細胞の培養等の無菌操作
実習	安全キャビネット	2	細胞の培養
実習	· 乾熱滅菌器	1	器具の滅菌

実習	PCR装置	1	遺伝子の増幅
実習	ディープフリーザー	1	試料の保存
実習	ヒートブロック恒温槽	1	試料の加熱
実習	p H メ – タ –	1	試薬の調製
実習	ウォーターバス	1	試料の加熱
実習	倒立型培養顕微鏡(Zeiss Axiovert40CFL)	1	培養細胞の観察
実習	薬用冷蔵ショーケース(三洋電機 MPR-312D)	1	試薬の保存
実習	PCR サーマルサイクラー (TP350)	1	遺伝子の増幅
実習	リアルタイム PCR 装置 (LightCycler 96)	1	遺伝子発現の定量
実習	iMark マイクロプレートリーダー (168-1130)	1	試料の測定
実習	微量高速冷却遠心機(KITMAN-24)	1	試料の遠心
実習	超低温フリーザー	1	試料の保存

卒業研究 1(薬剤治療学分野)

責任者・コーディネーター

薬剤治療学分野 三部 篤 教授

・教育成果(アウトカム)

多くの医薬品にはすぐれた治療効果とともに副作用がある。「治療効果/副作用」比を高めるためには、剤形や投与方法の工夫、治療作用と副作用発現機序の解明が必要である。これら創薬・育薬へ向けた考え方を、様々な実験系を用いた基礎研究を行いながら習得する。また、物事を解決するために必要な情報を集め、その情報を読み解く力を育てることで、研究テーマの意義や研究に関わる問題点の解決方法を学び、自分の考えを他者にプレゼンテーションできるようになる。卒業研究1では、5年、6年時に卒業研究2を行っていくために必要な基礎部分のトレーニングを行い、基礎力を身につけ、より高度な研究を進めることができるようになる。

 $(\ddot{r}_1 \ddot{r}_2 \ddot{r}_3 + \ddot{r}_4 \ddot{r}_5) = (\ddot{r}_1 \ddot{$

·到達目標(SBO)

- 1. 動物実験(遺伝子改変動物) それぞれの実験系の特性を理解し、医薬研究への応用について説明できる。 (☆)
- 2. 使用する薬物ならびに化合物の薬理作用と副作用を列挙できる。
- 3. 生活習慣病、神経筋疾患、循環器疾患に伴う最新の治療薬の特性を列挙できる。 (☆)
- 4. 生活習慣病、神経筋疾患、循環器疾患に伴う基本的な処方を解析できる。
- 5. 薬学関連分野の英語論文などの内容を説明できる。
- 6. 使用頻度の高い医薬品について医薬品との相互作用について列挙できる。
- 7. 医薬品(後発医薬品を含む)の使用について評価できる。
- 8. 薬剤師が行う調剤業務のリスクについて列挙できる。
- 9. 卒業研究1で行った研究内容をレポートとしてまとめることができる。

·実習日程

コマ数	講座・分野	担当教員	Ę	講義内容/到達目標
60	薬剤治療学分野	三部篇	教 授	変性タンパク質を原因とする難治療性疾患の治療法の開発 難治性疾患の多くは、正常な立体構造を保てない変性タンパク質がその病態に関わっている。本研究課題ではこの変性タンパク質を原因とする疾患(筋原線維性ミオパシーや神経筋疾患など)の病態を分子レベル、細胞レベル、動物レベルで検討し、その知見を基に新規治療法の開発を試みる。 1. 動物実験(遺伝子改変動物)・それぞれの実験系の特性を理解し、医薬研究への応用について説明できる。(☆) 2. 使用する薬物ならびに化合物の薬理作用と副作用を列挙できる。 3. 生活習慣病、神経筋疾患、循環器疾患に伴う最新の治療薬の特性を列挙できる。(☆) 4. 生活習慣病、神経筋疾患、循環器疾患に伴う基本的な処方を解析できる。

				5. 薬学関連分野の英語論文などの内容を説明できる。 6. 使用頻度の高い医薬品について医薬品との相互作用について列挙できる。 7. 医薬品(後発医薬品を含む)の使用について評価できる。 8. 薬剤師が行う調剤業務のリスクについて列挙できる。 9. 卒業研究 1 で行った研究内容をレポートとしてまとめることができる。
60	薬剤治療学分野	手塚	優助教	薬物、環境因子や嗜好品か発生段階 および組織形成に影響を及ほずことはよく知られている。しかし、これらの物質 かどの段階で、どの細胞に影響を及ほし、形態形成に影響しているかは殆と明らかにされていない。卒業研究でば、各組織 における特異的細胞の分化に対する薬物 およひぞの他の因子の効果を様々な実験で検討し、標的細胞および作用時期を明らかにするのを目標に研究を行う。到達目標は同上

	書籍名	著者名	発行所	発行年
推	治療薬マニュアル	浦部 晶夫 監修	南江堂	2016
推	薬がみえる vol.1	医療情報科学研究所編	メディックメディア	2014
推	薬がみえる vol.2	医療情報科学研究所 編	メディックメディア	2015
推	薬がみえる vol.3	医療情報科学研究所編	メディックメディア	2016

使用区分	機器・器具の名称	台数	使用目的
実習	ドラフトチャンバー	1	毒物、劇物取り扱い
実習	分光光度計(ダブルビーム)	1	定量分析
実習	マイクロタイタープレートリーダー	1	定量分析
実習	テーブルトップ冷却遠心機	1	サンプル調整
実習	マイクロ遠心機	1	サンプル調整
実習	テーブルトップ遠心機	1	サンプル調整
実習	冷蔵ショーケース	1	サンプル保存

実習	低温乾燥機	1	実験器具乾燥
実習	低温恒温器	1	遺伝子実験
実習	ディープフリーザー	1	サンプル保存
実習	マイクロミキサー	1	サンプル調整
実習	バイオメディカフリーザー	1	サンプル保存
実習	セミドライブロッティング	1	タンパク質実験
実習	パワーサプライ	1	タンパク質実験
実習	顕微鏡撮影CCD	1	サンプル観察
実習	超音波洗浄機	1	器具洗浄
実習	PCR用一サーマルサイクラー	3	遺伝子実験
実習	HPLC	1	定量分析
実習	蛍光検出器	1	サンプル観察
実習	細胞内カルシウム測定装置	1	サンプル観察
実習	UVトランスイルミネーター	1	遺伝子実験
実習	p H メーター	1	サンプル調整
実習	COOLSTAT	1	サンプル調整
実習	ロータリーエバポレーター	1	サンプル調整
実習	上皿天秤	1	試薬調整
実習	電子分析天秤	1	試薬調整
実習	ペリスタポンプ	1	サンプル調整
実習	ロータリーシェーカー	1	サンプル調整
実習	ホットプレート	1	サンプル調整
実習	卓上振盪恒温槽	1	インキュベーション
実習	卓上恒温槽	1	インキュベーション
実習	クリーンベンチ	1	細胞培養実験
実習	CO2インキュベーター	1	細胞培養実験
実習	オートクレーブ	1	細胞培養実験

実習	光学顕微鏡(正立)	1	サンプル観察
実習	蛍光顕微鏡(倒立)	1	サンプル観察
実習	細胞保存用液体窒素タンク	1	細胞培養実験
実習	ゲル撮影装置	1	遺伝子実験
実習	実体顕微鏡	1	サンプル観察
実習	孵卵器	1	サンプル調整
実習	CO2 換気回数測定器キット一式	1	調査研究機器

卒業研究 1(創剤学分野)

責任者・コーディネーター

創剤学分野 佐塚 泰之 教授

・教育成果 (アウトカム)

医薬品を必要なとき、必要な部位に送達する Drug Delivery System (DDS、薬物送達システム) は、医薬品の効力を増大させるとともに、副作用を軽減させることを可能とする創剤学的手法である。当分野では、基礎的な技能・知識を習得した後に薬物キャリアの性状と生物学的有用性の関連、臨床製剤の改善に取り組むことにより、臨床における研究の重要性が明確になる。卒業研究 1 のテーマは当分野の研究分野に対する各学生の興味を考慮して決定する予定である。

(ディプロマ・ポリシー: 2.7.8)

·到達目標(SBO)

- 1. 科学実験、操作、結果の説明などに関する英語表記を列記できる。
- 2. 薬学関連分野の英語論文などの内容を説明できるとともに、作成できる。
- 3. 製剤化の方法と意義を理解するために、薬物と製剤材料の物性、医薬品への加工、および DDS に関する基本的知識と技能を修得する。
- 4. 薬物治療の有効性、安全性、信頼性を高めるために、薬物の投与形態や薬物体内動態の制御法などを工夫した DDS に関する基本的知識を修得するとともに応用できる。(☆)
- 5. ドラッグキャリアにより創製された医薬品の具体例を述べることができる。(☆)
- 6. 現在使用されている医薬品の問題点をあげ、新規に開発されるべき医薬品ならびに剤形の特性を 説明できる。 (☆)
- 7. ドラッグキャリアの特性を理解し、既存医薬品の問題点の提起とその解決方法を立案、計画、実施できる。 (☆)

コマ数	講座・分野担当教員		講義内容/到達目標	
60	創 剤 学 分 野	佐塚 泰之 教授	創剤学、薬剤学、製剤学等の技術と知識を応用した医療薬学系の研究を行う。DDS を主体とし、リポソームに代表されるナノキャリアのキャラクタリゼーションと抗腫瘍剤等の薬効との関連、食品成分を含む薬物併用による医薬品の効果増強について研究する。 1. 研究計画の立案、実施、解析、問題提起と新たな研究の展開に関し習得できる。 2. プレゼンテーション能力を身に付けることができる。	
60	創 剤 学 分 野	杉山 育美 助教	創剤学、薬剤学、製剤学等の技術と知識を応用した医療薬学系の研究を行う。DDS を主体とし、リポソームに代表されるナノキャリアのキャラクタリゼーションと抗腫瘍剤等の薬効との関連、食品成分を含む薬物併用による医薬品の効果増強について研究する。 1. 医療現場で用いられている医薬品の創剤学的問題点を抽出し、解決できる。	

				2. リポソームの性状について詳細に学ぶとともに、 医薬品の創成に関わる生物学的有効性を規定する因子 に関し、物理学的側面よりアプローチできる。
60	創 剤 学 分 野	松尾	泰佑 助教	創剤学、薬剤学、製剤学等の技術と知識を応用した医療薬学系の研究を行う。DDS を主体とし、食品成分を含む薬物併用による医薬品の効果増強について研究する。 1. 医療現場で用いられている医薬品の創剤学的問題点を抽出し、解決できる。

	書籍名	著者名	発行所	発行年
参	基礎から学ぶ製剤化のサイエンス第3版	山本 恵司 監修	エルゼビアジャパン	2016
参	Liposomes : Methods and Protocols, Volume 1: Pharmaceutical Nanocarriers	V. Weissig, et al	Humana Press	2010
参	第 17 改正日本薬局方解説書 学生版	柴崎 正勝、他 監修	廣川書店	2016
参	スタンダード薬学シリーズ2 「物理系薬学Ⅱ 化学物質の 分析」 第2版	日本薬学会編	東京化学同人	2008
参	スタンダード薬学シリーズⅡ 6「医療薬学Ⅷ製剤化のサイ エンス」	日本薬学会編	東京化学同人	2017
参	薬局方試験法:概要と演習 第9版	伊藤 清美 他著	廣川書店	2011
参	創剤学実習書	創剤学講座 編	創剤学講座	2017

使用区分	機器・器具の名称	台数	使用目的
実習	蛍光光度計(日立、F-2500)	1	蛍光強度測定
実習	データ処理用 PC(日立、Null)	1	上記附属品
実習	分光光度計(日立、U1900)	1	吸光度測定
実習	マイクロプレートリーダー(日立ハイテク、 MTP800LAB)	1	殺細胞効果評価

実習	データ処理用 PC(日立、Null)	1	上記附属品
	, , , , , ,		
実習 	CO₂インキュベーター(ヒラサワ、CPD-2701)	1	細胞培養
実習	遠心機(日立、CF5RX)	1	サンプル分離
実習	スイングローター(日立、T4SS31)	1	上記附属品
実習	液体クロマトグラフィー(島津製作所、LC-20A システム)	1	サンプル定量
実習	LC ワークステーション(島津製作所、 Lcsolution Single)	1	上記附属品
実習	冷蔵庫(シャープ、SJ-HD50P)	1	サンプル保存
実習	レーザーゼータ電位計 (Sysmex, Nano-ZS)	1	リポソーム物性評価
実習	データ処理用 PC(Sysmex, Null)	1	上記附属品
実習	ディープフリーザ (三洋、MDF-192)	1	サンプル保存
実習	器具乾燥器(島津製作所、STAC-G400)	1	器具乾燥
実習	天秤(島津製作所、AUX120)	1	サンプル秤量
講義	顕微鏡(オリンパス、AUX120)	1	キャリア観察
実習	卓上微量高速遠心機(日立、CT15RE)	1	サンプル分離
実習	電子分析天秤(島津製作所、ATX224)	1	サンプル秤量
実習	簡易錠剤成形機	1	錠剤の調製
実習	低水位型恒温水槽(アズワン、THB-1400)	1	製剤の安定性試験
実習	倒立型ルーチン顕微鏡	1	培養細胞の観察

卒業研究 1(薬物代謝動態学分野)

責任者・コーディネーター

薬物代謝動態学分野 小澤 正吾 教授

・教育成果(アウトカム)

薬物の代謝は主に肝臓で行われ、その能力は効果や副作用の現れ方と密接に関連する。一方、薬物代謝や薬物動態の能力は遺伝的要因、非遺伝的要因により、個体間で著しく異なる。薬物代謝や薬物動態を担うタンパク質は、薬物、大気、飲料水、食品などを通じて体内に取り込まれる生体外異物の代謝・動態に関わっており、代謝能の変動とこれら異物に起因する毒性との関係を評価することは重要である。卒業研究1では、薬物代謝・薬物動態の変動要因が現れるメカニズムに関する実践的・実験的研究手法を学びながら薬物や生体外異物の代謝や動態の意義について学習する。薬物動態に関連する分野の日本語・英語の学術論文等から得た情報や、実験研究の結果をまとめ、発表する基礎的な技術と態度を身につける。 (ディプロマ・ポリシー: 2, 4, 7)

·到達目標(SBO)

- 1. 薬物代謝能をもつ細胞を培養し、顕微鏡観察ができる。
- 2. 薬物代謝酵素を免疫電気泳動法で検出できる。
- 3. 薬物代謝能をもつ細胞から DNA、RNA、タンパク質を調製できる。
- 4. 薬物代謝酵素、およびその発現調節因子の mRNA 含量を測定できる。
- 5. 薬物代謝酵素や薬物トランスポーターの発現調節機構について調査し、発表できる。
- 6. 薬物動態の変動要因について調査し、発表できる。
- 7. 薬物の代謝と効果・副作用との関連性について調査し、発表できる。
- 8. 環境化学物質の代謝と毒性発現について調査し、発表できる。
- 9. ヒト癌細胞を用いて薬物動態の変動機構を探索および証明する研究手法を説明できる。 (☆)

コマ数	講座・分野	担当教員	講義内容/到達目標
60	薬物代謝動態学分野	小澤 正吾 教授	薬物の体内動態に影響する薬物代謝酵素等の遺伝子 発現変動の機構の解析 1. 薬物投与後、薬効・有害事象発現と関連する薬物 代謝動態関連遺伝子発現変化の個体差の分子機構の 解析を行う。薬物の作用の評価、および創薬にも結 びつきうる最先端の研究である。以上に関する研究 セミナーへの参加を通じ、発表技能、個々の患者の 服用後のモニタリング結果を今後の治療に結びつけ るためのコミュニケーション技術についても学ぶこ とを目標とする。
60	薬物代謝動態学分野	幅野 渉 准教授	薬物動態の変動に関わるエピゲノム解析 1. 薬物動態の変動に関わるエピゲノムに関する研究 をセミナーで学ぶとともに、基本的な実験技法を身 につける。

ストレスと薬物代謝 1. 栄養飢餓ストレスを受けた細胞に薬物を添加し、薬物代謝がストレスによってどのような影響を受けているのかを研究する。外部刺激がストレスと薬物という複合的な場合の薬物代謝の変動を分子生物学的手法で解析し、ストレスが薬物療法リスクに及ぼす影響の評価を試みる。

·教科書·参考書等(教:教科書 参:参考書 推:推薦図書)

	書籍名	著者名	発行所	発行年
教	臨床薬物動態学:臨床薬理 学・薬物療法の基礎として 改訂第4版 (薬物代謝動態 学講座)	加藤隆一著	南江堂	2012
教	薬物代謝学:医療薬学・医薬 品開発の基礎として 第3版 (薬物代謝動態学講座)	加藤 隆一、鎌滝 哲也 編	東京化学同人	2010
教	Standard textbook 標準医療 薬学 医薬情報評価学(薬物 代謝動態学講座)	山田 安彦 編	医学書院	2009
参	廣川生物薬科学実験講座 15 薬物代謝酵素	北田 光一、大森 栄 編集	廣川書店	2001

使用区分	機器・器具の名称	台数	使用目的
実習	リアルタイム PCR(ABI、PCR システム 7500-1)	1	mRNA 定量のため
実習	製氷機(ホシサ*キ、FM-120F)	2	生物試料の調製のため
実習	培養シェーカー(タイテック、大型2段)	1	バクテリアの培養のため
実習	超遠心機(日立、CP80WX+P45AT+P28S2)	1	生物試料の調製のため
実習	DNAシーケンサー (ABI、3130xI-200)	1	核酸塩基配列の解読のため
実習	マルチプレートリーダー(ABI)	1	生物活性の測定のため
実習	画像解析装置(フジフィルム、LAS-3000)	1	生体高分子の検出と定量のため
実習	安全キャビ [*] ネット(日本エア-テック、BHC-1304 II A/B3)	2	バクテリアの培養のため

実習	共焦点レーザー顕微鏡(暗室込)(オリンパス、FV- 1000)	1	生体高分子の検出のため	
実習	倒立蛍光顕微鏡(ニコン)	1	生体高分子の検出のため	
実習	ドラフトチャンバー(島津理化、CBR-Sc15-F)	1	生体試料の調製のため	
実習	高速液体クロマトグラフィー(島津製作所、 Prominence)	1	酵素活性の測定のため	
実習	超低温槽(三洋電機バイオシステム、MDF-592)	2	生物試料の保存のため	
実習	遺伝子増幅装置(ABI)	2	遺伝子の解析のため	
実習	クロマトチェンパー(タイテック、M-210FN)	1	生体高分子の分析のため	
実習	安全キャビネット(日立、SCV-1305EC AB)	2	組織培養のため	
実習	超純水製造装置(日本ミリポア、Milli-Q Direct-Q)	1	超純水作製のため	
実習	オートクレーブ(トミー精工、LBS-325)	1	生物試料の滅菌のため	
実習	CO2 インキュヘータ(三洋電機バイオシステム、MCO- 5AC)	2	組織培養のため	
実習	薬用冷蔵庫(4℃)(三洋電機バイオシステム、 MPR-312D(CN))	1	生物試料の保存のため	
実習	微量高速遠心機(日立)	1	生物試料の調製のため	
実習	クリーンラック(日本クレア、CL-5412+CL-5431)	1	動物の一時飼育のため	
実習	ノ-ト型パソコン(HPCompaq nx6310 一式)	101	インターネットによる文献調 査のため	
実習	A 4 モノクロレーザープリンタ C a n o n L B P 3 4 1 0	4	インターネットによる文献調 査に係る資料作成のため	
実習	液体窒素保存容器(太陽日酸㈱、DR-30-6)	1	株細胞の保管のため	
実習	卓上振とう恒温槽(タイテック、パーソナル 11・SD セット)	1	酵素活性の測定のため	
実習	エキスパート天秤(ザルトリウス、LE225D)	1	試薬の秤量のため	
実習	乾熱滅菌器(ヤマト科学、SI601)	1	器具の滅菌のため	
実習	サーモマグネスター(柴田科学、MGH-320)	1	試薬溶液の撹拌のため	
実習	プロ-ヘ*キャヒ*ネット(島津理化、RC-30 543-540)	1	試薬の保管のため	
実習	テーブ・ルトップ。遠心機(久保田商事、2410)	1	生物試料の調製のため	

実習	インキュベーター(アズワン、IVC-450)	1	生物活性の測定のため
実習	恒温槽用温調器(島津理化、SBAC-31A)	1	生物活性の測定のため
実習	カラープリンター (理想科学 HC5500)	1	卒業研究に係る資料の作成の ため
実習	パソコン(ノ-ト型)(SONY、VISTA)	8	卒業研究に係る調査、およ び、資料の作成のため

卒業研究 1(衛生化学分野)

責任者・コーディネーター

衛生化学分野 杉山 晶規 准教授

・教育成果 (アウトカム)

疾患の予防・診断・治療における新しい方法の開発には、その病態の理解が不可欠である。衛生化学分野では、生活習慣病や腎臓病などの慢性疾患に対する新しい予防・診断・治療法の開発への貢献を目指し、分子レベルの解析や病理形態学などの様々な角度から、病態解明の研究を進めている。卒業研究では、本分野における研究の一翼を担って、研究の立案から実施、考察、成果のまとめまでを体験することにより、疾患の病態解析研究や創薬研究の考え方や進め方を理解し、実践できるようになる。また、討議や発表を通して、社会人に必要なコミュニケーション能力を身につけ、実践できるようになる。 (ディプロマ・ポリシー: 2,7,8)

·到達目標(SBO)

- 1. 研究課題達成に必要な情報を収集し、研究計画を立案することができる。(☆)
- 2. 生体試料の取扱い及びその分析、生化学実験、組み換え DNA 実験、培養細胞実験、動物実験、病理学解析、疫学解析などの中から、課題達成に必要な手技や手法を習得し、実施できる。 (☆)
- 3. 統計学的手法を用いて研究結果を解析することができる。 (☆)
- 4. 研究結果を考察し、その成果について説明及び討議をすることができる。 (☆)
- 5. 研究成果を卒業論文としてまとめ、ポスターあるいは口頭で発表する。 (☆)
- 6. 研究室内外のセミナーなどにおいて、発表内容を理解し、討議に参加することができる。(☆)
- 7. 薬学及び医療分野の英語文献を理解し、その内容を説明することができる。 (☆)

·実習日程

コマ数	講座・分野	担当教員	講義内容/到達目標
60	衛生化学分野	杉山 晶規 准教授	腎がん、腎疾患、血管新生異常症などの原因や予防に関わる因子の探索・同定 1. 研究目的の達成のために適切な生化学的分析法や遺伝子工学的手法を利用した評価系を確立し、これら評価系を用いた研究を実践できる。 2. 実験結果の解析、考察し、まとめ、発表できる。 3. 論文(日本語、英語)や講演の内容を理解し、要点をつかみ説明できる。
60	衛 生 化 学 分 野	米澤 正 助教	腎疾患の発症、進展に関与する因子の探索、腎疾患に対する新規治療機構の開発 1. 研究目的の達成のために適切な生化学的、遺伝子工学的手法を習得し、実践できる。 2. 実験結果について考察し、プレゼンテーション・ディスカッションできる。 3. 論文(日本語、英語)や講演の内容を理解し、要点をつかみ説明できる。

60	衛生化学分野	川崎	靖	助教	実験動物モデル、培養細胞系、臨床検体などを用いた生活習慣病による腎および肝疾患の研究 1. 研究目的の達成のために適切な対象を選び、必要な手技・手法を習得し、実践できる。 2. 実験結果の解析、考察し、まとめ、発表できる。 3. 論文(日本語、英語)や講演の内容を理解し、要点をつかみ説明できる。
----	--------	----	---	----	--

	書籍名	著者名	発行所	発行年
参	病態生理·生化学Ⅱ:病態生理·生化学各論	 井上 圭三 他 編	共立出版	1998

使用区分	機器・器具の名称	台数	使用目的
実習	ドラフトチャンバー	1	薬品を安全に取り扱うため
実習	乾熱滅菌器(島津理化、STAC-P450K)	1	器具の滅菌を行うため
実習	クリーンベンチ(三洋電機、MCV-B91F)	2	無菌操作を行うため
実習	倒立顕微鏡(オリンパス、IX71N-22FL/PH)	1	培養細胞等を観察するため
実習	倒立型顕微鏡落射蛍光装置(オリンパス、 X2N- FL-1)	1	培養細胞等を観察するため
実習	CO ₂ 培養器(三洋電機、MCO-18AIC)	2	動物細胞を培養するため
実習	凍結ミクロトーム(Leica、Leica CM1950)	1	凍結組織切片作成のため
実習	インビトロシェーカー(タイテック、Wave-Sl slim)	1	混合反応を行うため
実習	画像取込み装置(ATTO、AE-6932GXCF-U)	1	電気泳動結果の解析のため
実習	発光画像取込装置(富士フィルム、 LAS4000mini)	1	化学発光画像解析のため
実習	振とう培養器(東京理化、FMC-1000)	1	微生物培養実験のため
実習	バイオシェイカー(東京理化、MMS-3010)	1	微生物培養実験のため
実習	レーザービームプリンタ Satera (Canon、 LBP5400)	1	研究資料の印刷のため
実習	微量高速冷却遠心機(トミー精巧、MX-307)	1	分子生物学実験のため

実習	マイパワーⅡ (ATTO、AE8135)	1	電気泳動実験のため
実習	小型卓上照射装置(ATTO、WUV-M20)	1	電気泳動結果の解析のため
実習	マルチガスインキュベーター(パナソニックヘ ルスケア、MCO-5M)	1	動物細胞を培養するため
実習	超低温フリーザー(パナソニックヘルスケア、 MDF-DU300H-PJ)	1	細胞・試料の凍結保存のため

卒業研究 1(臨床薬剤学分野)

責任者・コーディネーター

臨床薬剤学分野 工藤 賢三 教授

・教育成果(アウトカム)

医薬品がその効果を有効かつ安全に発揮するためには、研究、臨床、最終使用における適正使用が不可欠である。そのためには医薬品の治療効果と副作用についての知識を深め、臨床現場における薬物療法の実際について把握しておく必要がある。当分野では、実際の臨床現場で遭遇する疑問や問題をテーマとし、課題発見や問題解決能力を育成し、また結果の評価、論文作成、口頭発表の仕方を習得することで、エビデンスに基づいた医薬品の適正使用を実践できる論理的薬剤師の養成を目指す。この研究により問題解決能力を持ったファーマシーサイエンティストの基礎を習得できる。卒業研究における具体的なテーマは、各学生の興味を考慮して決定する。

(ディプロマ・ポリシー: 2.7.8.9.10)

·到達目標(SBO)

- 1. 薬物療法における薬剤師の役割について例をあげて説明できる。
- 2. 医薬品の適正使用について例をあげて説明できる。
- 3. 必要な薬学関連文献を選択し検索できる。
- 4. 薬学関連分野の英語文献の内容を簡潔に要約し、説明できる。 (☆)
- 5. 電子カルテを適切に取り扱うことができる。 (☆)
- 6. 研究課題を解決するための実験・調査計画を立案することができる。 (☆)
- 7. 立案した計画に基づき、実験・調査を遂行することができる。(☆)
- 8. 実験に必要な器具・機器、また調査に必要なデータを適切に取り扱うことができる。 (☆)
- 9. 調査、実験から得られた結果を評価・考察し、説明(発表)あるいは討論することができる。 (☆)
- 10. 医学系研究倫理指針に基づき患者データを適切に取り扱うことができる。 (☆)

コマ数	講座・分野	担当教員	講義内容/到達目標
60	臨床薬剤学分野	工藤 賢三 教授	臨床現場での疑問点をもとに、薬物療法の疫学調査、飲みあわせによる相互作用、レギュラトリーサイエンスに係るアンケート調査、適正使用のための実務の検討、医薬品の使用評価、TDMを介して薬物動態などの研究を行う。研究テーマの背景調査、実験・調査、データ解析、評価・考察、プレゼンを行う。また、医学系研究倫理指針について湧をあげて説明できる。 1. 薬物療法における薬剤師の役割について例をあげて説明できる。 2. 医薬品の適正使用について例をあげて説明できる。 3. 必要な薬学関連文献を選択し検索できる。 4. 薬学関連分野の英語文献の内容を簡潔に要約し、説明できる。 5. 電子カルテを適切に取り扱うことができる。

			6. 研究課題を解決するための実験・調査計画を立案することができる。 7. 立案した計画に基づき、実験・調査を遂行することができる。 8. 実験に必要な器具・機器、また調査に必要なデータを適切に取り扱うことができる。 9. 調査、実験から得られた結果を評価・考察し、説明(発表)あるいは討論することができる。 10. 医学系研究倫理指針に基づき患者データを適切に取り扱うことができる。 11. 医学系研究倫理指針を概説できる。
60	臨床薬剤学分野	富田 隆 准教授	医薬品の適正使用に貢献するために、まず、医療現場における薬物療法の問題点を抽出する。次に、抽出した問題点を解決するために、in vito による再現実験、臨床試験(invivo)を実施する。最後に、実験結果を学会や論文で報告し、医療現場にフィードバックする手法を修得する。 1. 臨床の場における薬物療法の問題点を自ら抽出して解決できる能力が修得できる。 2. 患者のゲノム情報(CYP2C19, CYP2D6, P-Glycoprotein, および Breast Cancer Resistance Protein)を基にした薬物の適正使用法の確立や適正使用の推進等、社会的要望に応えられる研究が遂行できる。 3. 研究で明らかにした事実を臨床の場にできるが、ックするために、論文作成の手技が修得できる。4. 薬剤疫学、医療経済学など、国民の二不薬処方の最適化)、薬剤疫学は関係である。5. 本薬物療法は関係では、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1
60	臨床薬剤学分野	千葉 健史 助教	母乳の産生・分泌に影響を及ぼす薬剤の探索とシグナル伝達経路の解析に関する研究を行う。主に培養細胞を用い、分子生物学的手法による解析を行う。 1. 実験に必要な器具・機器、培養細胞、動物を適切に取り扱うことができる。 2. 実験に必要な試薬を適切に調製することができる。 3. 実験結果について、統計学的手法を用いて解析・評価し、分かりやすくまとめることができる。 4. 研究テーマの意義を理解し、卒業論文としてまとめることができる。
60	臨床薬剤学分野	平舩 寛彦 助教	乳腺細胞の母乳分泌に対するメカニカルストレスの 影響、後発医薬品の適正使用に関する調査などの研 究を行う。また、医薬品を適正に使用するにあた り、臨床における薬物治療上の問題点を収集し、そ の問題を解決するための研究を行う。

1. 実験に必要な器具・機器、	培養細胞、	動物を適切
に取り扱うことができる。		

- 2. 患者データの適切な取扱いを説明できる。
- 3. 実験に必要な試薬を適切に調製することができる。
- 4. 研究を通じて得られた結果を評価・考察し、説明(プレゼンテーション)あるいは討論することができる。

	書籍名	著者名	発行所	発行年
参	抗がん剤調製マニュアル	日本病院薬剤師会 監修	じほう	2008
参	がん疼痛の薬物療法に関する ガイドライン	日本緩和医療学会 編	金原出版	2010
参	新臨床腫瘍学	日本臨床腫瘍学会	南江堂	2009
参	治療薬マニュアル	高久 史磨、矢崎 義雄 監 修	医学書院	
参	医薬品情報学	折井 孝男 編集	南山堂	2009

使用区分	機器・器具の名称	台数	使用目的
実習	クリーンベンチ(SANYO、MCV-B91F)	1	細胞培養のため
実習	倒立型顕微鏡(OLYMPUS、CKX41)	1	細胞観察のため
実習	CO2 インキュベーター(ヤマト科学、IT300)	1	細胞培養のため
実習	ドラフトチャンバー(島津理化、CBR fumefood)	1	試薬調製のため
実習	溶出試験器(日本分光、DT-800)	1	溶出試験のため
実習	吸光度測定器(島津製作所、UV-mini1240)	1	定量分析のため
実習	サ-マルサイクラ- (AppliedBiosystemsGeneAmpPCRsystem9700)	1	遺伝子解析のため
実習	遠心機(トミー、LC-220)	1	試薬調製のため
実習	微量高速遠心機(トミー、MX-301)	1	試薬調製のため
実習	高速液体クロマトグラフィー(島津製作所、 Prominence)	1	定量分析のため

実習	マイクロプレートリーダー(Thermo Scientific、 Multiskan FC)	1	定量分析のため
実習	吸光グレーディングマイクロプレートリーダー (コロナ電気、SH-1200Lab)	1	定量分析のため
実習	平行粘度測定計(スプレッドメーター)	1	軟膏の粘度測定のため
実習	実習 薬用冷蔵庫(SANYO、MBR-304G4)	1	試料および試薬保存のため
実習	バイオメディカルフリーザー(パナソニックへ ルスケア、MDF-U339)	1	試料および試薬保存のため
実習	ディープフリーザー(SANYO、MDF-C8V)	1	試料および試薬保存のため
実習	液体窒素保存器(THERLYNE、BioCANE34)	1	細胞の保存のため
実習	電子天秤(A&D、GH-202)	1	試薬の秤量のため
実習	卓上振盪恒温槽(TAITEC、PERSONAL-11)	1	試薬調製のため
実習	迅速乾燥装置(池田理化、SPH-10N)	1	器具乾燥のため
実習	ホットマグネットスターラー(IKA、C-MAG HS10)	1	試薬調製のため
実習	超音波洗浄機(ヤマト科学、BRANSON8510)	1	器具洗浄のため
実習	pH メーター (堀場製作所、F-52)	1	試薬調製のため
実習	ドライオーブン(ヤマト科学、DG400	1	試料調製のため
実習	デスクトップパソコン(HP、Windows7)	2	卒業研究に係る調査、資料の 作成のため
実習	ノートパソコン(Panasonic、Windows7)	1	卒業研究に係る調査、資料の 作成のため
実習	ペインビジョン	1	痛み評価のため
講義	ノートパソコン(アップル MacBook Air)	1	スライド投影
実習	赤外線サーモグラフィー	1	体温等の観察のため
実習	顕微鏡用タッチパネルライブビュー一眼レフ (NY-X8i)	1	細胞等の観察・記録のため

卒業研究 1(情報薬科学分野)

責任者・コーディネーター

情報薬科学分野 西谷 直之 教授

· 学習方針(講義概要等)

近年の化学療法では、病原体による病因メカニズムを生物学的に解明し、それに必須の因子を標的とした医薬品の開発が盛んに試みられている。本分野では主にがん、感染症を対象にした分子標的創薬を志向した基礎研究を行う。すなわち細胞レベルでの評価系構築と化合物スクリーニング、化学療法薬の標的分子の同定、作用メカニズムの解明を中心に研究を進める。卒業研究のテーマは当分野の研究分野と各学生が興味を持つ対象を相談して決める予定である。また、感染症とがんの化学療法における問題点やニーズを探るために、症例・処方検討も行う。最新の研究動向を知るために、英文論文の抄読会も行う。

・教育成果(アウトカム)

最新の知見に触れ、自ら研究を行うことで、医療における問題点を抽出して解決するための知識、 技能、態度の基盤を形成する。 (ディプロマ・ポリシー: 2, 7, 8, 9)

·到達目標(SBO)

- 1. がん細胞や微生物などの増殖や増殖抑制を測定できる。
- 2. 化合物ライブラリーを適切に使用できる。
- 3. 化学療法薬の作用機構を説明できる。
- 4. 実験結果を正確に報告することができる。
- 5. プレゼンテーションを行うための技能と態度を身につける。
- 6. 症例・処方例から問題点を抽出できる。

コマ数	講座・分野	担当教員		um/	講義内容/到達目標
60	情報薬科学分野	西谷	直之	教授	がん細胞が依存するシグナル経路に対する阻害薬を探索する。また、スクリーニングによって得られた候補化合物の作用機序の解明を試みる。本研究を通して、最先端の創薬研究の一端を体験する。また、日常の議論やセミナーから、コミュニケーションや研究発表の技能と態度を身につける。 1. がん細胞や微生物などの増殖や増殖抑制を測定できる。 2. 化合物ライブラリーを適切に使用できる。 3. 化学療法薬の作用機構を説明できる。 4. 実験結果を正確に報告することができる。 5. プレゼンテーションを行うための技能と態度を身につける。 6. 症例・処方例から問題点を抽出できる。

60 情報薬科学分野

佐京 智子 助教

ヒトがん細胞における糖輸送タンパク質の機能解析 と新規な分子標的タンパク質の探索研究

· 教科書· 参考書等(教: 教科書 参: 参考書 推: 推薦図書)

	書籍名	著者名	発行所	発行年
参	化学療法学:病原微生物・が んと戦う	上野 芳夫、大村 智 監修 田中 晴雄、土屋 友房 編 集	南江堂	2009
参	ワインバーグ がんの生物学	Robert A. Weinberg 武藤 誠 他訳	南江堂	2008
参	がん分子標的治療研究 実践 マニュアル	日本がん分子標的治療学会 編集 曽根 三郎、鶴尾 隆 編集	金芳堂	2009

・特記事項・その他

研究発表の準備、症例・処方検討、英語論文紹介では、分野内で発表を行い、質疑や発表に関するアドバイスを受ける。実習中に生じる疑問については、随時質問の機会が与えられる。事前学修については、必要に応じて指定するので、指示に従うこと。

使用区分	機器・器具の名称	台数	使用目的
実習	PC (HP、6000 Pro SF/CT7)	1	データ解析、検索、資料作成
実習	PC (ノート型) (HP、4720s/CT)	4	データ解析、検索、資料作成
実習	炭酸ガス培養装置(三洋電機、MCO-18AIC (UV))	3	動物細胞の培養
実習	安全キャビネット(日本エアーテック、BHC- 1304 II A/B3)	3	微生物、動物細胞培養、無菌 操作
実習	Milli-Q 純水製造装置(日本ミリポア、Milli-Q Direct-Q)	1	試薬の調製
実習	振とう培養機(タイテック、BR-40LF)	1	微生物培養
実習	-80℃フリーザー(三洋電機バイオシステム、MDF-592)	1	試薬、試料の保存
実習	プレートリーダー(ベックマンコールター、 AD200)	1	酵素活性測定、タンパク質定 量
実習	オートクレーブ(トミー精工、ES-315)	1	試薬、器具の滅菌

— 777		_	-1.# DD 0.\}#
 	オートクレーブ(トミー精工、ES-215)	1	試薬、器具の滅菌
実習	微量天秤(ザルトリウス、LE2202S)	1	試薬の秤量
実習	上皿天秤(ザルトリウス、CP622)	1	試薬の秤量
実習	位相差顕微鏡(オリンパス、BX51+ MP5Mc/OL)	1	動物細胞の観察
実習	高速冷却遠心機(久保田商事、5910)	1	動物細胞の調製
実習	微量高速遠心機(久保田商事、3740)	2	試薬、試料の調製
実習	ヒーティングブロック(ヤマト科学、HF200)	1	酵素活性測定実験
実習	電磁スターラー(アイシス、HP30125)	1	試薬の調製
実習	インビトロシェイカー(タイテック、Wave- SI)	2	酵素活性測定実験
実習	パワーステーション 1000VC (アトー、AE- 8450CP)	2	電気泳動、ウエスタンブロット
実習	PHメーター(堀場製作所、F-52S)	1	試薬の調製
実習	冷凍冷蔵庫(三洋電機バイオシステム、MPR- 214F)	1	試薬、試料の保存
実習	冷凍冷蔵庫(ホシザキ、HRF-90XFT)	2	試薬、試料の保存
実習	ハ*イオメテ*ィカルフリーサ*-(三洋電機ハ*イオシステム、 MDF-538D)	1	試薬、試料の保存
実習	デジタルプロジェクター(キャノン、v- 3391300㎞)	1	課題研究成果発表
実習	実体顕微鏡システム(オリンパス、SZX16- 3151)	1	胚の観察
実習	顕微鏡用デジタルカメラ(日本ローバー、 MP5.0-RTV-CLR-10C)	1	顕微鏡写真撮影
実習	デジタルカメラ 制御パソコン(富士通、FMV- A6260 FMVXNNY82)	1	顕微鏡写真撮影
実習	SNAP i.d.蛋白質免疫検出装置(日本ミリポア、 WBAVDBASE)	1	蛋白質免疫検出
実習	手動マニュピレーター(ナリシゲ、M-152)	1	マイクロインジェクション
実習	プーラー(ナリシゲ、PN-30)	1	マイクロインジェクション
実習	Neon Transfection System	1	培養細胞への遺伝子導入

F			
実習	電動マイクロインジェクター(ナリシゲ、IM- 31)	1	マイクロインジェクション
実習	フィンピ [^] ペットノ-ハ [*] ス 8ch100−1200 μ L	1	試薬の分注
実習	フィンピ [^] ペットノ-ハ [*] ス 8ch30−300 μ L	1	試薬の分注
実習	GFP 用 LED 集光照明装置(オプトコード、 LEDGFP-WCCT)	1	胚の蛍光観察
実習	ハイフ゛リタ゛イセ゛ーションインキュヘ゛ーター (タイテック、 40751)	1	in situ ハイプリダイゼ-ション
実習	スマートウォーターバス(アズワン、TB-2N)	1	細胞培養
実習	研究用保冷庫(三洋電機、MPR-720)	1	試薬、試料の保存
実習	高速冷却遠心機(久保田商事、6200)	1	動物細胞、試料の調製
実習	冷却スラブ電気泳動装置ツインタイプ (バイオナクラ フト、BE-240)	1	タンパク質電気泳動
実習	ミニトランスプロットセル(バイオラッド、 170-3930JA)	1	ウエスタンブロット
実習	乾熱滅菌器(三洋電機バイオシステム、MOV- 112S)	1	器具の滅菌
実習	冷却低速遠心機(日立、CR22G)	1	菌体回収
実習	ドラフトチャンバー(島津理化、CBR-Sc15- F)	1	試薬の調製
実習	遠心エバポレーター(Savant)	1	試薬の調製
実習	液体クロマトグラフィー(島津製作所、 prominence)	1	試薬の品質管理
実習	PCR(バイオラッド、DNAEngine PTC-200)	1	遺伝子増幅
実習	1μ 分光光度計(ナノドロップテクノロジー、ND1000)	1	核酸濃度測定
実習	コールターカウンター(ベックマンコールタ ー、Multisizer 3)	1	細胞計数
実習	UVトランスイルミネーター(アトー、AE- 6933FXCF)	1	核酸の検出
実習	恒温槽(タイテック、MM-10)	1	細菌培養、真菌培養
実習	投込式恒温装置(ヤマト科学、BF200)	1	酵素反応、保温

実習	倒立型ルーチン顕微鏡落射蛍光装置(オリンパス、CKX41N-FL)	1	細胞の観察
実習	共焦点レーザー顕微鏡(オリンパス、FV1000)	1	蛍光染色像の観察
実習	超小型回転培養機(タイテック、RTー 30mini)	1	試料の調製
実習	クールインキュベーター	1	受精卵と胚の飼育
実習	Real-Time PCR System E co	1	遺伝子発現解析
実習	実体顕微鏡	1	受精卵と胚の観察
実習	ピペットマルチチャンネル	1	化合物スクリーニング
実習	Tali イメージサイトメーター	1	遺伝子発現、酵素活性の細胞 集団解析
実習	パソコン (SONY, SVP11229EJB)	1	資料作成、発表

卒業研究1(地域医療薬学分野)

責任者・コーディネーター

地域医療薬学分野 高橋 寛 教授

・教育成果(アウトカム)

今後、2025年の医療・介護のモデル(地域包括ケアシステム)の中で薬剤師の果たす役割が注目されている。健康サポート薬局や在宅医療、セルフメディケーションの支援など従来の業務以外に取組む必要がある。当分野では、海外の薬剤師の活動の文献による情報収集をはじめ、日本における地域医療の薬剤師業務の問題点を明確にし、改善策を検討していく。薬局や薬剤師や地域住民にアンケート調査を行い、ケアマネージャーなどの多職種と交流し、地域連携のあり方についても研究を行う。このような調査、研究活動を通して、地域医療に関する知識や研究手法を習得する。また、研究報告会や研修活動にて、プレゼンテーション技能やコミュニケーション能力を養う。研究テーマは、当分野の研究領域の範囲内から関心・興味を考慮して決定する。

(ディプロマ・ポリシー:1,3,4,5,6,7,8,9)

·到達目標(SBO)

- 1. 地域医療における薬剤師の役割について実例をあげて説明ができる。
- 2. 調査に必要な薬学関連文献を効率よく検索することができる。
- 3. 文献で知り得た内容を簡単に要約することができる。
- 4. 地域医療の問題点を抽出し、改善に向けて積極的に取組む。
- 5. 研究課題を解決するための調査計画を立案することができる。
- 6. 立案した計画に基づき、調査を遂行することができる。
- 7. 調査で得られた情報を適切に取り扱うことができる。
- 8. 調査から得られた情報を評価、考察し、文章化し、発表することができる。

·実習日程

コマ数	講座・分野	担当教員	講義内容/到達目標
60	地域医療薬学分野	高橋 寛 教授松浦 誠 准教授	薬局で行われている地域医療サービスに着目し、医療の質にどのような影響を及ぼすかを研究する。また、地域医療サービスに必要な薬学的業務の調査を行う。最終的に地域医療で活躍できる薬剤師に必要な知識や技能を身につける研修プラグラムの構築を行う。 1. 研究課題を解決するために調査計画を立案することができる。 2. 立案した計画に基づき、調査を遂行することができる。 3. 調査から得られた情報を評価及び考察しプレゼンテーション及び文章化することができる。

	書籍名	著者名	発行所	発行年
推	課題解決力と論理的思考力が 身につく プロジェクト学習 の基本と手法	鈴木 敏恵	教育出版	2012

・特記事項・その他

学外へ出向き、地域の情報収集活動を行うことがあります。

使用区分	機器・器具の名称	台数	使用目的
講義	パソコン(パナソニック CF-NX3)	1	スライド投影
講義	パソコン(Microsoft Surface Laptop Model 1769)	1	スライド投影、資料作成

卒業研究1(薬学教育学分野)

責任者・コーディネーター

薬学教育学分野 奈良場 博昭 教授

・教育成果(アウトカム)

薬学生物、細胞生物学、薬学実習 1、生化学、解剖学、機能形態学などで学んだ薬学知識と技能、態度を基礎として、ヒト疾患の背景と先端的な治療薬の開発について実践的に学ぶことを目標として、個別の研究テーマについて、実験科学的な自主的学習を行い、問題解決型基盤能力の向上と生涯学習の習慣を確立する。 (ディプロマ・ポリシー: 2,7,8)

·到達目標(SBO)

- 1. アレルギーや炎症反応に関与する生理活性物質の産生制御機構を理解し、分子生物学的な解析法を習得する。 (☆)
- 2. 無菌操作と培養細胞、小動物の取扱いを習得する。
- 3. 学術データベース検索(PubMed等)により的確な科学情報の収集ができる。(☆)
- 4. 実験課題のレポート作成、ならびに成果報告ができる。 (☆)
- 5. チーム医療における薬剤師の役割と責任を自覚する。 (☆)

・実習日程

コマ数	講座・分野	担当教員	講義内容/到達目標
60	薬学教育学分野	奈良場 博昭 教授	炎症性病態解析 1. アレルギーや炎症反応に関与する生理活性物質の産生制御機構を分子細胞生物学的に解析することが出来る。 2. 実験動物を用いて、炎症性病態モデルを作成し、病態生理学的に解析することが出来る。

·教科書·参考書等(教:教科書 参:参考書 推:推薦図書)

	書籍名	著者名	発行所	発行年
参	細胞生物学	永田 和宏 他編	東京化学同人	2006
参	分子細胞生物学 第 6 版	H.Lodish,他著 監訳 石浦 章一 他	東京化学同人	2010

使用区分	機器・器具の名称	台数	使用目的
実習	ドラフトチャンバー(CBR-Sc15-F、島津理化)	2	試薬の調整など
実習	乾燥機 (MOV-212 (U)、三洋電機バイオシステム)	1	実験器具の乾燥

実習	PCR (9700G、ABI)	1	遺伝子の増幅など
実習	製氷器(FM-120F、ホシザキ)	1	サンプルの保管など
実習	冷却高速遠心器(日立)	2	試料の高速冷却遠心
実習	クリーンベンチ(MCV-131BNF、三洋電機バイオシステム)	1	細胞の培養等の無菌操作
実習	CO2インキュベーター(MCV18AIC(UV)、三洋電 機バイオシステム)	1	細胞の培養
実習	オートクレーブ(LBS-325、トミー精工)	1	培養器具の滅菌など
実習	ディープフリーザー(-80℃)(MDF-392、三洋 電機バイオシステム)	1	試料や試薬の超低温保存
実習	恒温インキュベーター(MIR-153、三洋電機バイオシステム)	1	大腸菌の培養
実習	4℃チャンバー(MPR-1410、三洋電機バイオシステム)	1	低温での実験操作や試薬 の保管
実習	4℃フリーザー (MPR-312D(CN)、三洋電機バイオシ ステム)	1	培養試薬の冷蔵保存
実習	-30℃フリーザー(MDF-U537、三洋電機バイオシ ステム)	1	培養試薬の凍結保存
実習	位相差顕微鏡+冷却CCDカメラ(ツアイス)	1	培養細胞の観察と記録
実習	セーフティキャビネット(MHE131AJ、三洋電機バイ オシステム)	1	無菌操作
実習	自動セルカウンター(Countess II 、ライフテクノロジーズ)	1	細胞数の計測