微生物学実習

責任者・コーディネーター		生物薬学講座生体防御学分野 大橋 綾子 教授			
担当講座·学科(タ	生物薬学講座生体防御学	分野、臨床薬学講	座薬学	教育学分野	
対象学年		2			
期間	後期		区分・時間数 (1コマ2時間換算)	実習	30 時間(15 コマ)
単位数		1 単位			

・ねらい

微生物学に関連する各講義で学ぶ事柄や、必要となる知識と技能について、実験を通じて理解し身につけるとともに実験結果をまとめる。これにより、実験結果を総合的に考察し、レポートを作成することができるようになる。グラム染色やイムノクロマト法などの実験を通じて、実際の医療現場で用いられる分析法の目的と原理、操作法の概略と特徴を理解する。

·学修目標

- 1) 滅菌・消毒、微生物の取扱い方、代表的な細菌の同定法、微生物の遺伝子伝達法の基礎知識と技能を習得することで、感染症の予防や化学療法に応用するための基盤を形成する。
- 2) 抗原抗体反応を利用した微生物の検出方法に関する実習を通じて、感染症の検査方法を理解できる。
- 3) 実験レポートを適切にまとめることができる。
- ・薬学教育モデル・コア・カリキュラム(令和 4 年度改訂版)対応項目

C-6-3 微生物の分類、構造、生活環、C-6-2 生命情報を担う遺伝子、C-2-7 医療現場における分析法

·学修事項

- (1) 代表的な滅菌法と消毒法 【1)】
- (2)無菌操作、分離培養、純培養 【1)】
- (3) グラム染色 【1)】
- (4) 細菌の代表的な試験法(生化学的性状試験) 【1)】
- (5) 細菌の遺伝子伝達 【1)】
- (6) 細菌の薬剤感受性 【1)】
- (7)代表的な免疫学的測定法 (イムノクロマトグラフィー法) 【2)】
- (8) ウイルスの構造と複製 【2)】
- (9) 実験レポートの作成 【3)】
- ・この科目を学ぶために関連の強い科目

微生物学、ゲノムサイエンス、細胞生物学、免疫生物学、化学療法学、食品衛生学

感染症学、保健衛生学

·講義日程

(矢) 東 301 3-A 実習室、東 302 3-B 実習室

月日	曜日	時限	講座・分野	担当教員	講義内容/到達目標
10/29	水	3	生体防御学分野 薬学教育学分野 生体防御学分野	大橋 綾子 教授 白石 博久特任教授 錦織 健児 助教	全体説明、器具と培地の滅菌 1. 滅菌、消毒および殺菌、静菌の概念を説明できる。 2. 主な滅菌法および消毒法について説明できる。 事前学修:事前に実習書に目を通し、実験内容と実験手順を把握する。 事後学修:理解を深めるためのレポート課題に取り組む。後日返却されるレポートに目を通し、復習すること。
10/29	水	4-5	生体防御学分野 薬学教育学分野 生体防御学分野	大橋 綾子 教授白石 博久特任教授錦織 健児 助教	分離培養、環境細菌の培養 1.細菌または真菌の分離培養を実施できる。 2.安全かつ適切に無菌操作を実施できる。 3.実験レポートを適切にまとめることができる。 事前学修:事前に実習書に目を通し、 実験内容と実験手順を把握する。 事後学修:実験結果・考察をレポートにまとめ、理解を深めるための課題に取り組む。後日返却されるレポートに目を通し、復習すること。
10/30	木	3	生体防御学分野 薬学教育学分野 生体防御学分野	大橋 綾子 教授白石 博久特任教授錦織 健児 助教	純培養 1. 代表的な細菌の純培養を実施できる。 2. 安全かつ適切に無菌操作を実施できる。 【PBL】 事前学修:事前に実習書に目を通し、 実験内容と実験手順を把握する。 事後学修:理解を深めるためのレポート課題に取り組む。後日返却されるレポートに目を通し、復習すること。
10/30	木	4-5	生体防御学分野 薬学教育学分野 生体防御学分野	大橋 綾子 教授白石 博久特任教授錦織 健児 助教	確認培養 1. 細菌の同定に用いる代表的な試験法 (生化学的性状試験)について説明できる。 2. 代表的な細菌を同定できる。 3. 実験レポートを適切にまとめることができる。 事前学修:事前に実習書に目を通し、 実験内容と実験手順を把握する。

					事後学修:理解を深めるためのレポート課題に取り組む。後日返却されるレポートに目を通し、復習すること。
10/31	金	3-5	生体防御学分野 薬学教育学分野 生体防御学分野	白石 博久 特任教授	グラム染色 1. 代表的な細菌を同定できる。 2. グラム染色を実施できる。 3. 実験レポートを適切にまとめることができる。 【ICT (Google ドライブ)】 事前学修:事前に実習書に目を通し、実験内容と実験手順を把握する。 事後学修:理解を深めるためのレポート課題に取り組む。後日返却されるレポートに目を通し、復習すること。
11/4	火	3-4	生体防御学分野 薬学教育学分野 生体防御学分野		薬剤感受性試験 1. 薬剤感受性試験を実施できる。 2. 安全かつ適切に無菌操作を実施できる。 3. 実験レポートを適切にまとめることができる。 【PBL】 事前学修:事前に実習書に目を通し、 実験内容と実験手順を把握する。 事後学修:理解を深めるためのレポート課題に取り組む。後日返却されるレポートに目を通し、復習すること。
11/5	水	3-4	生体防御学分野 薬学教育学分野 生体防御学分野	大橋 綾子 教授白石 博久特任教授錦織 健児 助教	大腸菌の接合 1. 細菌の接合を理解し、実施できる。 2. 安全かつ適切に無菌操作を実施できる。 3. 実験レポートを適切にまとめることができる。 【PBL】 事前学修:事前に実習書に目を通し、 実験内容と実験手順を把握する。 事後学修:理解を深めるためのレポート課題に取り組む。後日返却されるレポートに目を通し、復習すること。
11/6	木	3	生体防御学分野 薬学教育学分野 生体防御学分野	大橋 綾子 教授白石 博久特任教授錦織 健児 助教	イムノクロマトグラフィー法によるウイルスの検出 1. イムノクロマトグラフィー法の原理を説明できる。 2. イムノクロマトグラフィー法によりインフルエンザウイルスを検出し、その型を判定することができる。 3. 実験レポートを適切にまとめることができる。 事前学修:事前に実習書に目を通し、実験内容と実験手順を把握する。

					事後学修:理解を深めるためのレポート課題に取り組む。後日返却されるレポートに目を通し、復習すること。
11/6	木	4	生体防御学分野 薬学教育学分野 生体防御学分野	大橋 綾子 教授白石 博久特任教授錦織 健児 助教	まとめと後片付け 1. 実験レポートを適切にまとめることで、実験結果を総合的に考察し、レポートを作成する能力を身につける。事前学修:実習書に目を通し、実験内容と実験手順を把握する。事後学修:理解を深めるためのレポート課題に取り組む。後日返却されるレポートに目を通し、復習すること。

ディプロマポリシーとこの科目関連

, i e e e e e e e e e e e e e e e e e e	
1. 薬剤師として医療に携わる職業であることを理解し、高い倫理観と豊かな人間性、及び社	
会の変化に柔軟に対応できる能力を有しているもの。	
2. 地域における人々の健康に関心をもち、多様な価値観に配慮し、献身的な態度で適切な医	^
療の提供と健康維持・増進のサポートに寄与できるもの。	\triangle
3. チーム医療に積極的に参画し、他職種の相互の尊重と理解のもとに総合的な視点をもって	
ファーマシューティカルケアを実践する能力を有するもの。	
4. 国際的な視野を備え、医療分野の情報・科学技術を活用し、薬学・医療の進歩に資する総	
合的な素養と能力を有するもの。	0

・評価事項とその方法

実習レポート(70%)と技能(30%)で評価する。

全ての実験課題のレポート提出をもって評価の対象とする。

学修事項	DP	中間試験	レポート	小テスト	定期試験	発表	その他 (技能)	合計
1~6	4		50				25	75
7~8	4		10				5	15
9	2, 4		10					10
合	計		70				30	100

·教科書·参考書等(教:教科書 参:参考書 推:推薦図書)

	書籍名	著者名	発行所	発行年
教	スタンダード薬学シリーズ Ⅱ4「生物系薬学Ⅲ 生体防 御と微生物」	日本薬学会 編	東京化学同人	2016
教	薬系免疫学(改訂第4版)	植田 正、前中 勝実 編集	南江堂	2022

参 微生物学 病原微生物と治 療薬 改訂第8版	今井 康之 編	南江堂	2021
----------------------------	---------	-----	------

・特記事項・その他

実習に対する事前学修の時間は最低30分、事後学修の時間はおよそ2時間を要する。実習レポートの課題は解説し、提出されたレポートは添削して返却する。

・当該科目に関連する実務経験の有無 無

・授業に使用する機器・器具と使用目的

使用区分	機器・器具の名称	台数	使用目的
実習	オートクレーブ(トミー精工、ES-215)	6	培地の滅菌
実習	小型恒温水槽(東京理化器械、NTT-2000)	20	試薬等の保温
実習	精製水調製装置(オルガノ、ピュアライト PRO-0100)	1	精製水の調製
実習	大型恒温振とう培養機(タイテック、BR- 3000LF)	2	細菌の培養
実習	薬用保冷庫(三洋電機、MPR-414F)	1	試薬等の保存
実習	乾熱滅菌器(三洋電機、MOV-212S)	2	器具の滅菌・乾燥
実習	全自動超音波ピペット洗浄器(島津理化、SUS- 100PN)	2	器具の洗浄
実習	電子天秤(アズワン、ASP-202F)	8	試薬の秤量
実習	生物顕微鏡(オリンパス、BX51)	1	グラム染色