薬学研究概論

責 任 者 : 奈良場 博昭 教授

担当講座·分野 : 薬学教育学分野、情報薬科学分野、機能生化学分野、創薬有機化学分野、

薬剤治療学分野、薬物代謝動態学分野、構造生物薬学分野、生体防御学分野、

地域医療薬学分野

 講 義
 9回

 単 位
 1単位

期間

前期

学習方針

基本理念:

薬学研究科博士課程では、最先端の生命科学や薬学知識を学び、卓越した技能を修得することが 求められる。本概論では、研究倫理および様々な先進研究分野について学ぶことにより、多様な 視点にたち、主体的に自立した研究者となることを目指す。

教育成果 (アウトカム):

臨床の場において必要な高度な専門知識の基盤となるがんや感染制御、リード化合物の探索、医薬分子の構造設計、有機分子と生体分子との相互作用、分子標的薬など医薬品化学など、最先端の知識および研究手法を修得することができる。更に、生体高分子の構造、酵素反応、分子遺伝学、遺伝子の解析、生体膜の輸送の分子機構などに関する知識、研究手法を修得し、薬学研究者としての基礎を構築することができる。また、様々な薬学専門職を担う次世代の育成に携わることができる。

(ディプロマ・ポリシー: 1, 2, 3, 4)

到達目標 (SBOs):

- 1. 様々な薬学専門職を担う次世代の育成に携わることができる。
- 2. 研究の目的、実施、結果の考察を自ら実行し、その成果を学内外に発信することができる。
- 3. 研究倫理を理解し、様々な法規制、指針、宣言等に基づき研究を遂行することができる。
- 4. がんや感染症およびその治療標的に関して説明することができる。
- 5. 標的分子の選定、化合物スクリーニング、化合物構造の最適化の知識を習得し、創薬戦略 を立案できるようになる。
- 6. 細胞膜の輸送体と輸送体が関わる生命現象について理解し説明することができる。
- 7. 酵素一分子の動きを観察する手法を理解するとともに細胞内外の酸性化の生理学的意義を評価できる。
- 8. 医療現場における有機化学の重要性を理解し解説することができる。
- 9. 有機分子と生体分子との相互作用を説明できる。
- 10. 薬物治療学などについて最新の情報を収集し、その確実性と有用性を正しく評価できる。
- 11. 薬物治療の問題点を抽出し、解決するために必要な情報を調べることができる。

- 12. 薬物動態に関連する遺伝子の発現レベルの個体差が現れる機構を概説できる。
- 13. 薬物動態に関連する酵素、薬物輸送体、薬物受容体と薬効・副作用の関連を解説できる。
- 14. 生体高分子の機能および構造解析に用いる手法について概説できる。
- 15. 化合物探索、設計、合成に用いる手法について概説できる。
- 16. 特定の遺伝子を導入した生物、あるいは特定の遺伝子を破壊した生物の作製法について提案し実施できる。
- 17. 遺伝子機能解析の医薬研究における重要性を理解し実践に応用できる。
- 18. 地域医療における問題を提起し、その対応策について討議し理解できる。
- 19. 地域医療における患者中心のチーム医療の一員として薬物療法を評価できる。

講義日程

場所…東研究棟 3 階共有研究室

回数	曜	時限	講座・分野	担	当 者	内容
4/20	火	18:00 ~ 19:30	薬学教育学分野	奈良場	博昭 教授	研究倫理および次世代教育 1. 様々な薬学専門職を担う次世代の育成に携わることができる。 2. 研究の目的、実施、結果の考察を自ら実行し、その成果を学内外に発信することができる。 3. 研究倫理を理解し、様々な法規制、指針、宣言等に基づき研究を遂行することができる。事前学習:必要な場合には担当教員より指示がある。事後学修:講義内容をレポートとしてまとめ担当教員に提出すること。
4/27	火	18:00 ~ 19:30	情報薬科学分野	西谷	直之 教授	がん、感染制御と分子標的薬 1. がんや感染症およびその治療標的に関して説明することができる。 2. 標的分子の選定、化合物スクリーニング、化合物構造の最適化の知識を習得し、創薬戦略を立案できるようになる。 事前学習:必要な場合には担当教員より指示がある。 事後学修:講義内容をレポートとしてまとめ担当教員に提出すること。

5/11	火	18:00 ~ 19:30	機能生化学分野	中西	真弓 教授	酵素反応および膜輸送 1. 細胞膜の輸送体と輸送体が関わる生命現象について理解し説明することができる。 2. 酵素一分子の動きを観察する手法を理解するとともに細胞内外の酸性化の生理学的意義を評価できる。事前学習:必要な場合には担当教員より指示がある。事後学修:講義内容をレポートとしてまとめ担当教員に提出すること。
5/25	火	18:00 ~ 19:30	創薬有機化学分野	河野	富一 教授	有機分子と生体分子の相互作用 1. 医療現場における有機化学の重要性を理解し解説することができる。 2. 有機分子と生体分子との相互作用を説明できる。 事前学習:必要な場合には担当教員より指示がある。 事後学修:講義内容をレポートとしてまとめ担当教員に提出すること。
6/8	火	18:00 ~ 19:30	薬剤治療学分野	三部	篤 教授	薬物治療の情報収集と解析 1. 薬物治療学などについて最新の情報を収集し、その確実性と有用性を正しく評価できる。 2. 薬物治療の問題点を抽出し、解決するために必要な情報を調べることができる。 事前学習:必要な場合には担当教員より指示がある。 事後学修:講義内容をレポートとしてまとめ担当教員に提出すること。
6/22	火	18:00 ~ 19:30	薬物代謝動態学分野	小澤	正吾 教授	薬物動態と薬効・副作用 1. 薬物動態に関連する遺伝子の発現レベルの個体差が現れる機構を概説できる。 2. 薬物動態に関連する酵素、薬物輸送体、薬物受容体と薬効・副作用の関連を解説できる。

					事前学習:必要な場合には担当教員より指示がある。 事後学修:講義内容をレポートとしてまとめ担当教員に提出すること。 事前学習:必要な場合には担当教員より指示がある。 事後学修:講義内容をレポートとし
7/6	火	18:00 ~ 19:30	構造生物薬学分野	阪本 泰光 准教授	てまとめ担当教員に提出すること。 生体高分子の構造と機能 1. 生体高分子の機能および構造解析に用いる手法について概説できる。 2. 化合物探索、設計、合成に用いる手法について概説できる。 事前学習:必要な場合には担当教員より指示がある。 事後学修:講義内容をレポートとしてまとめ担当教員に提出すること。
7/20	火	18:00 ~ 19:30	生体防御学分野	白石 博久 特任教授	分子遺伝学と遺伝子の解析 1. 特定の遺伝子を導入した生物、あるいは特定の遺伝子を破壊した生物の作製法について提案し実施できる。 2. 遺伝子機能解析の医薬研究にお
7/27	火	18:00 ~ 19:30	地域医療薬学分野	松浦 誠 特任教授	地域医療と薬物療法 1. 地域医療における問題を提起し、 その対応策について討議し理解でき る。 2. 地域医療における患者中心のチ

各講義に対するレポート(100%)から判定する。

特記事項 (事前学修等)

授業に対する事前学修 (予習・復習) の時間はそれぞれ 4 時間程度を要する。 レポートは、コメント添付や添削を行って返却する。

病態医化学特論

責 任 者 : 那谷 耕司 教授

担当講座・分野 : 臨床医化学分野、臨床検査医学講座

講義 8回

単位 1単位

期間

前期

学習方針

基本理念:

メタボリックシンドローム、糖尿病、脂質異常症などの生活習慣病の対策は、現代の医療における最重要課題のひとつである。「病態医化学特論」では学部で学ぶ「医療薬学」などの知識を基に、糖尿病を中心に生活習慣病の病態、検査、治療について、最先端の知見を含め、より高度な内容を講述する。

教育成果 (アウトカム):

生活習慣の改善や薬物治療が中心となる生活習慣病の治療においては、臨床薬剤師の存在が重要となる。また新たな治療薬の開発において、生活習慣病の病態に対する知識が必須である。「病態医化学特論」を受講することにより、このような臨床薬剤師、薬学研究者に必要な知識とその知識を活かすための科学的思考法を修得し、実践に応用できるようになる。

(ディプロマ・ポリシー: 1, 2, 3, 4)

到達目標 (SBOs):

- 1. 糖尿病の病態・治療、研究について、最先端の知見を含め理解し実践に応用できる。
- 2. メタボリックシンドロームの病態・治療、研究について、最先端の知見を含め理解し実践に応用できる。
- 3. 脂質異常症の病態・治療、研究について、最先端の知見を含め理解し実践に応用できる。
- 4. 肥満症の病態・治療、研究について、最先端の知見を含め理解し実践に応用できる。
- 5. 生活習慣病を評価する臨床検査の測定原理や検査データを評価できる。
- 糖化反応とその生体応答系について、最先端の知見を含め理解し実践に応用できる。
- 7. 生体内へテロ多糖であるグリコサミノグリカンの生合成酵素や分解酵素を先天的に欠いた 遺伝性疾患の発症機構、病態、治療について、最新の知見を含め理解し実践に応用できる。

回数	曜	時限	講座・分野	担	当	者	内容
1	月	1	臨床医化学分野	那谷	耕司	教授	糖尿病の病態・治療 1. 糖尿病の病態・治療について、最先端 の知見を含め理解し実践に応用できる。 事前学習:学部で学んだ糖尿病の病態、 検査、治療について、再確認しておく。 事後学習:授業の内容について、その日 のうちに整理、復習しておく。
2	月	1	臨床医化学分野	那谷	耕司	教授	糖尿病研究の最先端 1. 糖尿病研究について、最先端の知見を 含め理解し実践に応用できる。 事前学習:学部で学んだ糖尿病の病態、 検査、治療について、再確認しておく。 事後学習:授業の内容について、その日 のうちに整理、復習しておく。
3	月	1	臨床医化学分野	那谷	耕司	教授	生活習慣病の病態・治療 1. メタボリックシンドローム、脂質異常症、肥満症の病態・治療について最先端の知見を含め理解し実践に応用できる。事前学習:学部で学んだ生活習慣病の病態、検査、治療について再確認しておく。事後学習:授業の内容について、その日のうちに整理、復習しておく。
4	月	1	臨床医化学分野	那谷	耕司	教授	生活習慣病研究の最先端 1. メタボリックシンドローム、脂質異常症、肥満症の研究について、最先端の知見を含め理解し実践に応用できる。事前学習:学部で学んだ生活習慣病の病態、検査、治療について再確認しておく。事後学習:授業の内容について、その日のうちに整理、復習しておく。
5	月	1	臨床医化学分野	那谷	耕司	教授	生活習慣病の病因・病態における生化学 的側面 1.生活習慣病の病因・病態における生化 学的側面について、最先端の知見を含め 理解し実践に応用できる。 事前学習:学部で学んだ生活習慣病の病

					能・技术、海療について再歴知しており
					態、検査、治療について再確認しておく。
					事後学習:授業の内容について、その日
					のうちに整理、復習しておく。
					生活習慣病を評価する臨床検査
					1. 生活習慣病を評価する臨床検査の測定
					原理や検査データを評価できる。
					事前学習:予め渡しておくメタボリック
6	月	1	臨床検査医学講座	諏訪部 章 教授	シンドローム患者の臨床データを解読
					し、その患者に起こっている病態機序に
					ついて予測しておく。
					事後学習:授業の内容について、その日
					のうちに整理、復習しておく。
					糖化反応とその生体応答系
					1. 糖化反応とその生体応答系について、
					最先端の知見を含め理解し実践に応用で
			金沢大学大学院		きる。
7	月	1	医薬保健学総合	山本 靖彦 非常勤講師	事前学習:糖化反応とはどのような反応
			研究科		であり、その生物学的な意義は何か調査
					をしておく。
					事後学習:授業の内容について、その日
					のうちに整理、復習しておく。
					糖質の合成・分解酵素の欠損に基づく遺伝性
					疾患
					1. 重要な生体内へテロ多糖であるグリコ
					サミノグリカンの生合成酵素や分解酵素
					を先天的に欠いた遺伝性疾患が、難病と
					して指定されている。これらの疾患の発
			名城大学		症機構、病態、治療について、最新の知見
8	月	1	薬学部	山田 修平 非常勤講師	を学び、実践に応用できる。
			★丁申h		を手じ、天成に心がくさる。 事前学習:ヘテロ多糖であるグリコサミ
					プリカンおよびタンパク質の代表的な
					フグリカンおよびタンハグ貝の代表的な 翻訳後修飾である糖鎖付加について、再
					翻訳後修即でめる稲頭竹加について、丹
					事後学習:授業の内容について、その日
					のうちに整理、復習しておく。

レポート (70%) 、口頭試問 (30%) から総合的に評価する。

特記事項 (事前学修等)

授業に対する事前学修の時間は、予習、復習にそれぞれ2時間程度を要する。 提出されたレポートについては、内容を確認、添削した後、返却する。

炎症再生医学特論

責 任 者 : 奈良場 博昭 教授

担当講座·分野 : 薬学教育学分野

 講 義
 8回

 単 位
 1単位

期間

前期

学習方針

基本理念:

炎症性病態に関する基盤的知識を習得し、その治療法や治療薬に関して最新の情報を学ぶ。また、再生医療の現状と可能性、そして問題点に関して理解を深める。

教育成果 (アウトカム):

近年、炎症反応は、癌や生活習慣病などに代表される疾患の基盤的病態との捉え方が提唱され、 長期にわたるストレス応答と組織リモデリングにより、組織・器官の機能不全が引き起こされる と考えられるようになってきた。また、再生医療分野では人工多能性幹細胞の開発が進み、医療 に大きな変革をもたらそうとしている。本講義では、炎症性病態と抗炎症薬に関する理解を深め、 更に、急速に発展する再生医療の可能性に関して最新の知識を習得し、実践に応用できるように なる。 (ディプロマ・ポリシー:1,2,3)

到達目標 (SBOs):

- 1. 生活習慣病や癌などの各種疾患に共通する基盤病態としての慢性炎症を概説できる。
- 2. 炎症性疾患における細胞及び細胞間相互作用を理解し実践に応用できる。
- 3. 代表的な炎症関連因子に関して、その役割や制御方法を理解し研究することができる。
- 4. 慢性肝炎、自己免疫性疾患、癌、動脈硬化等における炎症の病態生理を概説できる。
- 5. 再生医療に関する基盤技術と一般的知識に関して概要を理解し解説できる。
- 6. 人工多能性幹細胞に関して、現状と問題点を理解し解説できる。
- 7. 口腔炎症性疾患の病態と治療に関して理解し解説できる。
- 8. 歯科における再生医療の現状と問題点に関して概説できる。

回数	曜	時限	講座・分野	担 当 者	内容
1	水	2	薬学教育学分野	奈良場 博昭 教授	炎症性病態の基礎 1. 生活習慣病や癌などの各種疾患に共通する基盤病態としての慢性炎症を概説できる。 事前学習:関連する分野の総説を読んでおくこと。 事後学習:授業中に指示された課題に取り組むこと。
2	水	2	薬学教育学分野	奈良場 博昭 教授	炎症の細胞生物学 1. 炎症性疾患における細胞及び細胞間相 互作用を理解し実践に応用できる。 事前学習:関連する分野の総説を読んで おくこと。 事後学習:授業中に指示された課題に取 り組むこと。
3	水	2	薬学教育学分野	奈良場 博昭 教授	炎症と疾患 1. 代表的な炎症関連因子に関して、その役割や制御方法を理解し研究することができる。 2. 慢性肝炎、自己免疫性疾患、癌、動脈硬化等における炎症の病態生理を概説できる。事前学習:関連する分野の総説を読んでおくこと。事後学習:授業中に指示された課題に取り組むこと。
4	水	2	薬学教育学分野	奈良場 博昭 教授	再生医療の基礎 1. 再生医療に関する基盤技術と一般的知識に関して概要を理解し解説できる。 事前学習:関連する分野の総説を読んでおくこと。 事後学習:授業中に指示された課題に取り組むこと。
5	水	2	薬学教育学分野	奈良場 博昭 教授	人工多能性幹細胞の応用 1. 人工多能性幹細胞に関して、現状を理解し解説できる。 事前学習:関連する分野の総説を読んで

					おくこと。
					事後学習:授業中に指示された課題に取
					り組むこと。
					人工多能性幹細胞の応用
					1. 人工多能性幹細胞に関して、問題点を
					理解し解説できる。
6	水	2	薬学教育学分野	奈良場 博昭 教授	事前学習:関連する分野の総説を読んで
					おくこと。
					事後学習:授業中に指示された課題に取
					り組むこと。
					まとめと課題発表
		2	薬学教育学分野	奈良場 博昭 教授	1. 課題について適切にまとめることがで
					きる。
7	水				事前学習:関連する分野の総説を読んで
					おくこと。
					事後学習:授業中に指示された課題に取
					り組むこと。
					まとめと課題発表
					1. 課題について適切に発表できる。
	-1.0	0	本公址大兴八四	大点组 建四 粉短	事前学習:関連する分野の総説を読んで
8	水	2	薬学教育学分野	奈良場 博昭 教授	おくこと。
					事後学習:授業中に指示された課題に取
					り組むこと。

各講義に対するレポート (60%) 及び課題発表 (40%) から判定する。

特記事項 (事前学修等)

授業に対する事前学修 (予習・復習) の時間はそれぞれ 4 時間程度を要する。

レポートは、コメント添付や添削を行って返却する。課題発表に関しては、修正事項をフィードバックする。

分子薬剤治療学特論

責 任 者 : 三部 篤 教授 担当講座・分野 : 薬剤治療学分野

 講 義
 8回

 単 位
 1単位

期間

後期

学習方針

基本理念:

多くの医薬品にはすぐれた治療効果とともに副作用がある。「治療効果/副作用」比を高めるためには、剤形や投与方法の工夫、治療作用と副作用発現機序の解明が必要である。治療効果/副作用の解明には、薬物の生体への作用を分子、細胞および個体レベルで解析するだけでなく、臨床における薬物作用(効果および有害作用)を理論的に解析できる能力が必要となる。本特論では、これら創薬・育薬へ向けた考え方を解説する。

一般成果 (アウトカム):

薬物の生体への作用を分子、細胞および個体レベルで理解し、臨床における薬剤作用を理論的 に説明するとともに実践に応用できる。 (ディプロマ・ポリシー:2)

到達目標 (SBOs):

- 1. 薬物治療学、医学、薬学、疫学などについて最新の情報を収集できる。
- 2. 収集した情報の確実性と有用性を正しく評価できる。
- 3. 治療上の問題点を抽出できる。
- 4. 抽出した問題点を解決するために必要な情報を調べて分りやすく発表できる。
- 5. 発表、質疑応答、討論に積極的に参加して問題解決に寄与することができる。

回数	曜	時限	講座・分野	担	当	者	内	容
1	金	2	薬剤治療学分野	三部	篤	教授	不整脈、心不全、高血圧 どの心臓・血管系の疾病 1.循環器疾患治療薬の 薬物治療を説明できる。 事前学習:授業予定範囲 書の該当する項目を読ん 事後学習:講義で説明 を見直すこと。	患の薬剤治療 薬理、および病態・ 囲に関して、専門 んでおくこと。

2	金	2	薬剤治療学分野	三部 篤 教授	糖尿病、高脂血症、高尿酸血症、メタボリック シンドロームなどの代謝性疾患の薬剤治療 1. 代謝疾患治療薬の薬理、および病態・ 薬物治療を説明できる。 事前学習:授業予定範囲に関して、専門 書の該当する項目を読んでおくこと。 事後学習:講義で説明した範囲のレジメ を見直すこと。
3	金	2	薬剤治療学分野	三部 篤 教授	慢性閉塞性肺疾患、気管支喘息などの呼吸器・胸部の疾患の薬物治療 1. 呼吸器疾患について、治療薬の薬理、 および病態・薬物治療を説明できる。 事前学習:授業予定範囲に関して、専門 書の該当する項目を読んでおくこと。 事後学習:講義で説明した範囲のレジメ を見直すこと。
4	金	2	薬剤治療学分野	三部 篤 教授	腎炎、腎不全、ネフローゼなどの腎臓・尿路の疾患の薬剤治療 1. 腎疾患について、治療薬の薬理、および病態・薬物治療を説明できる。 事前学習:授業予定範囲に関して、専門書の該当する項目を読んでおくこと。 事後学習:講義で説明した範囲のレジメを見直すこと。
5	金	2	薬剤治療学分野	三部 篤 教授	貧血、白血病血液・造血器の疾患の薬剤治療 1. 血液疾患について、治療薬の薬理、および病態・薬物治療を説明できる。 事前学習:授業予定範囲に関して、専門 書の該当する項目を読んでおくこと。 事後学習:講義で説明した範囲のレジメを見直すこと。
6	金	2	薬剤治療学分野	三部 篤 教授	消化性潰瘍、肝炎・肝硬変、膵炎などの消化器系疾患の薬剤治療 1.消化器疾患について、治療薬の薬理、および病態・薬物治療を説明できる。 事前学習:授業予定範囲に関して、専門書の該当する項目を読んでおくこと。 事後学習:講義で説明した範囲のレジメを見直すこと。

7	金	2	薬剤治療学分野	三部 篤 教授	免疫アレルギー疾患の薬剤治療 1. 免疫およびアレルギーが関わる疾患について、薬理および臨床適用を説明できる。 事前学習:授業予定範囲に関して、専門書の該当する項目を読んでおくこと。 事後学習:講義で説明した範囲のレジメを見直すこと。
8	金	2	薬剤治療学分野	三部 篤 教授	脳血管疾患、てんかん、パーキンソン病などの神経・筋の疾患の薬剤治療 1. 神経疾患について、薬理および臨床適用を説明できる。 事前学習:授業予定範囲に関して、専門書の該当する項目を読んでおくこと。 事後学習:講義で説明した範囲のレジメを見直すこと。

講義内での討議の内容(100%)より判断する。

特記事項 (事前学修等)

予習としては、授業予定の項目を調べておくこと。復習としては、授業での配付資料を用いて まとめること。授業に対する事前学修 (予習・復習) の時間はそれぞれ 4 時間程度を要する。

授業出欠カードには自由記載欄があり、教員への質問や要望を伝えることができる。質問の解答は、質問を受けた次の週の講義終了後に対応する。

組織 · 器官機能研究法特論

責 任 者 : 弘瀬 雅教 教授 担当講座・分野 : 分子細胞薬理学分野

講義 8回

単位 1単位

期間

後期

学習方針

基本理念:

個体はその構成要素である臓器・組織における機能の統合としてその活動を維持している。すなわち、生理現象解明のためには、生体をシステムとして捉える事が必要である。ここでは、実験動物と人を対象とし、細胞、組織、臓器、個体のレベルでその機能研究方法を解説し、生理現象を生体システムとして捉えて、得られた実験結果に対して合理的な解釈を下すための基礎知識の習得を図る。

教育成果 (アウトカム):

細胞、組織、臓器、個体、さらに実験動物と人を対象にした生体機能の解析法について学び、 それらを実施できるようになる。 (ディプロマ・ポリシー:3)

到達目標 (SBOs):

1. 細胞、組織、臓器、個体、さらに実験動物と人を対象にした生体機能の解析法を評価し実践できる。

回数	曜	時限	講座・分野	担	当	者	内 容
1	火		分子細胞薬理学分野	弘瀬		. 教授	パッチクランプ法による細胞の機能解析 法 I 1. パッチクランプ法の原理について概説 できる。 事前学習: パッチクランプ法に関する専 門書を熟読しておくこと。
							事後学習:講義内容を書き留めたノート と講義資料を参考にして、自分でまとめ ておくこと。
2	火	2	分子細胞薬理学分野	弘瀬	雅教	: 教授	パッチクランプ法による細胞の機能解析 法Ⅱ 1. パッチクランプ法を用いた細胞の機能 解析法の実際について概説できる。

						事前学習:パッチクランプ法を用いた細
						動の機能解析法に関する専門書を熟読し
						でおくこと。
						事後学習:講義内容を書き留めたノート
						と講義資料を参考にして、自分でまとめ
						ておくこと。
						摘出組織を用いた心機能・循環動態解析
						法
		2				1. 摘出組織を用いた心機能・循環動態解
						析法について概説できる。
3	火		分子細胞薬理学分野	引瀬	雅教 教授	事前学習:摘出組織を用いた心機能・循
		_	74 1 WEND X 1 74 51	32100		環動態解析法に関する専門書を熟読して
						おくこと。
						事後学習:講義内容を書き留めたノート
						と講義資料を参考にして、自分でまとめ
						ておくこと。
						個体を用いた心機能・循環動態解析法
						1. 個体を用いた心機能・循環動態解析法
						について概説できる。
						事前学習:個体を用いた心機能・循環動
4	火	2	分子細胞薬理学分野	弘瀬 雅	雅教 教授	態解析法に関する専門書を熟読しておく
						こと。
						事後学習:講義内容を書き留めたノート
						と講義資料を参考にして、自分でまとめ
						ておくこと。
						ヒト生理機能の解析法I
						1.ヒト生理機能の解析法の原理について
						概説できる。
						事前学習:ヒト生理機能の解析法の原理
5	火	2	分子細胞薬理学分野	弘瀬	雅教 教授	についての専門書を熟読しておくこと。
						事後学習:講義内容を書き留めたノート
						と講義資料を参考にして、自分でまとめ
						ておくこと。
						ヒト生理機能の解析法Ⅱ
						1. 心臓電図の解析を実践できる。
6	火	2	分子細胞薬理学分野	弘瀬	雅教 教授	事前学習:心電図についての参考書を熟
	``	۷	刀丁剛心衆垤子汀野	なく	1世秋 教授	読しておくこと。
						事後学習:講義内容を書き留めたノート
]					予以丁日・冊我们付で目で田ツに/ 「

						と講義資料を参考にして、自分でまとめておくこと。
7	火	2	分子細胞薬理学分野	弘瀬	雅教 教授	ヒト生理機能の解析法Ⅲ 1. 脳波の解析を実践できる。 事前学習: 脳波についての専門書を熟読 しておくこと。 事後学習: 講義内容を書き留めたノート と講義資料を参考にして、自分でまとめ ておくこと。
8	火	2	分子細胞薬理学分野	弘瀬	雅教 教授	ヒト生理機能の解析法IV 1. 筋電図の解析を実践できる。 事前学習:筋電図についての参考書を熟 読しておくこと。 事後学習:講義内容を書き留めたノート と講義資料を参考にして、自分でまとめ ておくこと。

レポート (50%) とレポートを使用した質疑応答 (50%) により評価する。

特記事項 (事前学修等)

各授業に対する事前学習 (予習・復習) の時間はそれぞれ 4 時間程度を要する。

蛍光イメージング研究法特論

責 任 者 : 弘瀬 雅教 教授

担当講座·分野 : 分子細胞薬理学分野、生化学講座 細胞情報科学分野、薬理学講座 情報伝

達医学分野

 講 義
 8回

 単 位
 1単位

期間

後期

学習方針

基本理念:

蛍光イメージング法の発達に伴って、細胞のみならず特定のタンパク質や分子をも可視化し、 さらにその局在を捉えることができるようになってきている。加えて、この方法を利用する事に よって、生体機能がより詳細に観察できるようになってきており、本科目では、この蛍光イメー ジングによる生命現象の動的理解について概説する。

<u>教育成果(アウトカム):</u>

本特論では、以下の4項目について中心的に学び、実践できるようになる。1)膜電位感受性 色素を用いた細胞の興奮を蛍光として捉える技術や蛍光カルシウムインジケーターを用いた細胞 内カルシウム動態の解析法を学び、実践できるようになる。2)蛍光タンパクを利用したライブイメージングによるシグナル伝達と細胞運動のメカニズム解明について学び、実践できるようになる。3)蛍光タンパクを利用した腫瘍細胞の動き、浸潤、転移や血管新生などのような生きた動物の体内での癌の重要な側面を目で見るための蛍光イメージングについて中心に学び、実践できるようになる。4)蛍光タンパクを利用したライブイメージングによる創薬・治療・診断への応用について中心に学び実践できるようになる。 (ディプロマ・ポリシー:3)

到達目標 (SBOs):

- 1. 膜電位感受性色素およびカルシウムイメージングについて解説できる。
- 2. ライブイメージングによるシグナル伝達と細胞運動解析について解説できる。
- 3. 蛍光タンパクを利用した腫瘍細胞の動き、浸潤、転移や血管新生の解析方法を実践できる。
- 4. 蛍光タンパクを利用したライブイメージングによる創薬・治療・診断への応用について提案 できる。

回数	曜	時限	講座・分野	担	当	者	内	容
1	水	1	分子細胞薬理学分野	弘瀬	雅教	教授	膜電位光学マッピングは 1. 膜電位光学マッピン 計測法を概説できる。	

					事前学習:膜電位光学マッピングによる 活動電位計測法に関する専門書を熟読し ておくこと。 事後学習:講義内容を書き留めたノート と講義資料を参考にして、自分でまとめ ておくこと。
2	水	1	分子細胞薬理学分野	弘瀬 雅教 教授	細胞内カルシウムイメージング 1. 細胞内カルシウムイメージング法を概説できる。 事前学習:細胞内カルシウムイメージング法に関する専門書を熟読しておくこと。 事後学習:講義内容を書き留めたノートと講義資料を参考にして、自分でまとめておくこと。
3	水	1	薬理学講座 情報伝達医学分野	平 英一 教授	ライブイメージングによるシグナル伝達の解析法 1. ライブイメージングによるシグナル伝達の解析法を概説できる。 事前学習:ライブイメージングによるシグナル伝達の解析法に関する専門書を熟読しておくこと。 事後学習:講義内容を書き留めたノートと講義資料を参考にして、自分でまとめておくこと。
4	水	1	薬理学講座 情報伝達医学分野	平 英一 教授	ライブイメージングによる細胞運動の解析法 1. ライブイメージングによる細胞運動の解析法を概説できる。 事前学習:ライブイメージングによる細胞運動の解析法に関する専門書を熟読しておくこと。 事後学習:講義内容を書き留めたノートと講義資料を参考にして、自分でまとめておくこと。
5	水	1	生化学講座細胞情報科学分野	石崎 明 教授	蛍光タンパクを利用した腫瘍細胞の動き、浸潤の解析法 1. 蛍光タンパクを利用した腫瘍細胞の動き、浸潤の解析法を概説できる。

							事前学習:蛍光タンパクを利用した腫瘍細胞の動き、浸潤の解析法に関する専門書を熟読しておくこと。 事後学習:講義内容を書き留めたノートと講義資料を参考にして、自分でまとめておくこと。 蛍光タンパクを利用した腫瘍細胞の転移や血管新生の解析方法 1.蛍光タンパクを利用した腫瘍細胞の転移移や血管新生の解析方法を概説できる。
6	水	1	生化学講座 細胞情報科学分野	石崎 明 教授	教授	事前学習:蛍光タンパクを利用した腫瘍 細胞の転移や血管新生の解析方法に関する専門書を熟読しておくこと。 事後学習:講義内容を書き留めたノート と講義資料を参考にして、自分でまとめ ておくこと。	
7	水	1	分子細胞薬理学分野	弘瀬	雅教	教授	ライブイメージングによる創薬 1. ライブイメージングによる創薬について概説できる。 事前学習: ライブイメージングによる創薬に関する専門書を熟読しておくこと。 事後学習:講義内容を書き留めたノートと講義資料を参考にして、自分でまとめておくこと。
8	水	1	分子細胞薬理学分野	弘瀬	雅教	教授	ライブイメージングによる治療・診断法 1. ライブイメージングによる治療・診断 法について概説できる。 事前学習:ライブイメージングによる治療・診断法に関する専門書を熟読しておくこと。 事後学習:講義内容を書き留めたノートと講義資料を参考にして、自分でまとめておくこと。

レポート (50%) とレポートを使用した質疑応答 (50%) により評価する。

特記事項 (事前学修等)

各授業に対する事前学修 (予習・復習) の時間はそれぞれ 4 時間程度を要する。

ゲノム情報薬学特論

責 任 者 : 幅野 渉 准教授 担当講座・分野 : 薬物代謝動態学分野

講義 8回

単位 1単位

期間

後期

学習方針

基本理念:

患者の病態や体質、生活習慣を考慮して最適な薬物治療を目指すテーラーメイド薬物治療では、 ゲノムやエピゲノムに関する情報が重要なエビデンスとなる。本特論では、病態の解析や薬物治療を実施するために必要な各種のゲノム情報を収集、解析し評価する技法、およびゲノム情報の 適正な取り扱いについて学ぶ。

教育成果 (アウトカム):

各種のゲノム情報を検索、収集する技法を習得し、ゲノムを網羅解析する手法ならびに研究の 具体例を学ぶことにより、ゲノム情報を活用した基礎研究または臨床研究の計画を立案し、遂行 することができる。 (ディプロマ・ポリシー:1,3)

到達目標 (SBOs):

- 1. ゲノムに関連する情報の種類および情報源について説明できる。
- 3. ゲノム情報とエピゲノム情報の違いを説明できる。
- 4. ゲノムを解析するための代表的な手法の原理と使い分けについて説明できる。
- 5. エピゲノムを解析するための代表的な手法の原理と使い分けについて説明できる。
- 6. ゲノム関連情報を活用した創薬研究について、具体例を挙げて概説できる。
- 7. ゲノム関連情報を活用した薬物治療について、具体例を挙げて概説できる。
- 8. ゲノム関連情報を取り扱う研究者が配慮すべき倫理について説明できる。

回数	曜	時限	講座・分野	担	当	者	内容
1	水	2	薬物代謝動態学分野	幅野		准教授	ゲノム情報を活用した薬物治療 1.薬物動態および薬理作用の変動をゲノム情報と関連づけて説明できる。 事前学習:関連する内容について調べておくこと。 事後学習:授業で用いた資料を復習し、必要ならばさらに調査すること。

			T	1			
2	水	2	薬物代謝動態学分野	幅野	涉	准教授	各種ゲノム情報と情報源 1. ゲノムに関連する情報(オミックス情報)を列挙し、その情報源を説明できる。 事前学習:関連する内容について調べておくこと。 事後学習:授業で用いた資料を復習し、必要ならばさらに調査すること。
3	水	2	薬物代謝動態学分野	幅野	涉	准教授	エピゲノム情報 (1) 1. ゲノムとエピゲノムの違いを説明できる。 事前学習:関連する内容について調べて おくこと。 事後学習:授業で用いた資料を復習し、 必要ならばさらに調査すること。
4	水	2	薬物代謝動態学分野	幅野	渉	准教授	エピゲノム情報 (2) 1. エピジェネティクス機構を概説できる。 事前学習:関連する内容について調べておくこと。 事後学習:授業で用いた資料を復習し、必要ならばさらに調査すること。
5	水	2	薬物代謝動態学分野	幅野	渉	准教授	ゲノム・エピゲノムの解析手法 1. 代表的なゲノム・エピゲノムの解析手法を概説できる。 事前学習:関連する内容について調べておくこと。 事後学習:授業で用いた資料を復習し、必要ならばさらに調査すること。
6	水	2	薬物代謝動態学分野	幅野	涉	准教授	ゲノム情報の活用 1. ゲノム情報を活用した病態解析、薬物治療について、具体例を挙げて説明できる。 事前学習:関連する内容について調べておくこと。 事後学習:授業で用いた資料を復習し、必要ならばさらに調査すること。
7	水	2	薬物代謝動態学分野	幅野	渉	准教授	エピゲノム情報の活用 1.エピゲノム情報を活用した病態解析、 薬物治療について、具体例を挙げて説明 できる。 事前学習:関連する内容について調べて

							おくこと。
							事後学習:授業で用いた資料を復習し、
							必要ならばさらに調査すること。
							ゲノム情報の適正な取り扱い
							1. ゲノム情報のデータを統計解析すると
							きの問題点を説明できる。
							2. ゲノム情報を取り扱う研究者が配慮す
8	水	2	薬物代謝動態学分野	幅野	渉	准教授	べき倫理について説明できる。
							事前学習:関連する内容について調べて
							おくこと。
							事後学習:授業で用いた資料を復習し、
							必要ならばさらに調査すること。

提出課題または講義中の口頭試問(100%)により評価する。

特記事項 (事前学修等)

各授業に対する事前・事後の学修時間はそれぞれ4時間程度を要する。提出課題の内容は、 授業時に提示する。

提出課題または口頭試問については、講義中に解説してフィードバックする。

分子腫瘍学特論

責任者: 杉山晶規 教授

担当講座·分野 : 衛生化学分野、医歯薬総合研究所 腫瘍生物学研究部門

講義 8回

単位 1単位

期間

前期

学習方針

基本理念:

がん専門薬剤師など、がんの治療に取り組む医療従事者として医療を実践するためには、がんの原因となる分子を理解し、がんの病態を見極め、適切な治療法や治療薬を選択できる能力が必要である。本講義では、発がんやがんの悪性化に関わる因子について分子レベルで解説する。さらに、がん薬物療法の実践に必須となる分子標的治療薬や、バイオマーカー診断について解説する。

教育成果 (アウトカム):

がんの病態を理解するには、がんに関わる分子の理解が必須である。また、ゲフィチニブに代表される分子標的抗がん薬の治療効果や副作用の発現は、がん細胞内の分子の変化に依存しており、抗がん薬の効果を適切に発揮させ、副作用を軽減させるためにも、がん病態の分子レベルでの解析は必須である。本講義により、発がんやがんの悪性化に関わる因子について分子レベルで理解を深めることができ、がん薬物療法の実践に必須となる分子標的治療薬や、バイオマーカー診断について理解を深めることができる。 (ディプロマ・ポリシー1, 2, 3)

到達目標 (SBOs):

- 1. がん遺伝子・がん抑制遺伝子について解説できる。
- 2. がんとシグナル伝達に関わる因子の関係について比較検討できる。
- 3. がんと細胞周期調節に関わる因子の関係について解説できる。
- 4. がんとエピジェネティックな変化について評価できる。
- 5. がんと血管新生の関係について解説できる。
- 6. がんの浸潤・転移と悪性化について解説できる。
- 7. がんの生物学的特性に関わる分子について評価できる。
- 8. 分子標的治療薬を提案できる。
- 9. がんのバイオマーカー診断を提案できる。
- 10. がんのテーラーメイド型の薬物療法を提案できる。

回数	曜	時限	講座・分野	担 当 者	内容
1	火	1	衛生化学分野	杉山 晶規 教授	がん遺伝子・がん抑制遺伝子 1. がん遺伝子・がん抑制遺伝子について 解説できる。 事前学習:講義内容に関する各自の関心 事項を1つ選び、簡単に調べること。 事後学習:配布プリントを利用し、学習 した範囲を復習すること。
2	火	1	衛生化学分野	杉山 晶規 教授	シグナル伝達や細胞周期調節に関わる因子、がんの血管新生、浸潤・転移 1. がんとシグナル伝達に関わる因子の関係について比較検討できる。 2. がんと細胞周期調節に関わる因子の関係について解説できる。 3. がんと血管新生の関係について解説できる。 4. がんの浸潤・転移と悪性化について解説できる。 4. がんの浸潤・転移と悪性化について解説できる。 事前学習:講義内容に関する各自の関心 事項を1つ選び、簡単に調べること。 事後学習:配布プリントを利用し、学習した範囲を復習すること。
3	火	1	衛生化学分野	杉山 晶規 教授	がんとエピジェネティックな変化 1. がんとエピジェネティックな変化について評価できる。 事前学習:講義内容に関する各自の関心 事項を1つ選び、簡単に調べること。 事後学習:配布プリントを利用し、学習した範囲を復習すること。
4	火	1	医歯薬総合研究所腫瘍生物学研究部門	前沢 千早 教授	乳癌、大腸癌を中心に低分子化合物、生物製剤等の分子標的治療薬に関して、臨床現場での投与フローと、効果判定および副作用とサルベージ法について学ぶ。 1. がんの生物学的特性に関わる分子について説明できる。 2. 生物製剤の作用機転、副作用、効果判定法について説明できる。

	1				
					事前学習:講義内容に関する各自の関心 事項を1つ選び、簡単に調べること。 事後学習:配布プリントを利用し、学習
					した範囲を復習すること。
5	火	1	医歯薬総合研究所腫瘍生物学研究部門	前沢 千早 教授	臨床応用されている分子標的治療薬の種類と適応がん種について概説し、さらに今後の分子標的治療薬の開発に関するトピックスを学ぶ。 1. 現在、新規治療標的として期待されている分子について、proof of concept (POC)の実証に必要な事柄を列挙できる。 2. がん免疫療法の現状について説明できる。事前学習:講義内容に関する各自の関心事項を1つ選び、簡単に調べること。事後学習:配布プリントを利用し、学習した第四な復習せること。
					した範囲を復習すること。
6	火	1	医歯薬総合研究所腫瘍生物学研究部門	前沢 千早 教授	臨床応用されている抗がん薬の選択および治療効果判定のためのコンパニオン診断について学ぶ。 1. 特定分子を対象として、がんのコンパニオン診断法を提案できる。 事前学習:講義内容に関する各自の関心事項を1つ選び、簡単に調べること。 事後学習:配布プリントを利用し、学習した範囲を復習すること。
7	火	1	医歯薬総合研究所腫瘍生物学研究部門	前沢 千早 教授	臨床応用されている抗がん薬の選択および治療効果判定のためのバイオマーカー診断について学ぶ。(その2) 1.分子標的治療法の相加・相乗効果、合成致死とその評価法について説明できる。事前学習:講義内容に関する各自の関心事項を1つ選び、簡単に調べること。事後学習:配布プリントを利用し、学習した範囲を復習すること。
8	火	1	衛生化学分野	杉山 晶規 教授	分子腫瘍学特論のまとめ 1. がんの生物学的特性とそれらに関わる 分子について説明できる。 2. 治療の標的や診断の標的となる分子に

	2	いて説明できる。
	事	F前学習:講義内容に関する各自の関心
	事	耳項を1つ選び、簡単に調べること。
	事	『後学習:配布プリントを利用し、学習
	L	た範囲を復習すること。

講義内での討議の内容 (90%)、提出レポート (10%) から総合的に判断する。

特記事項(事前学修等)

授業に対する事前学修 (予習・復習) の時間はそれぞれ4時間程度を要する。

レポートは、コメント添付や添削を行って返却する。質問事項に関するフィードバックは適宜 行う。

薬品構造生物化学特論

責 任 者 : 野中 孝昌 教授 担当講座・分野 : 構造生物薬学分野

講 義 10回

単位 1単位

期間

前期

学習方針

基本理念:

薬物設計において、標的となる生体高分子の立体構造を知ることは、創薬の第一歩であり、次の点で極めて重要である。(1) バーチャルスクリーニングによるリード化合物の探索、(2) 立体構造に基づく医薬分子の構造設計、(3) 生体高分子-医薬分子相互作用の熱力学量算出。本講義では、生体高分子のX線結晶構造解析の最新手法と、そこから導かれる構造情報が上記(1) ~ (3) に対してどのように生かされるかを学ぶ。

教育成果 (アウトカム):

生体高分子のX線結晶構造解析の基礎を学習することによって、高エネルギー加速器研究機構放射光研究施設における異常分散法を中心とした最新の解析技術を理解できるようになる。解析の実例を学ぶことによって、タンパク質の立体構造に基づいた、リード化合物の探索と医薬分子の構造設計について、説明できるようになる。さらに、薬物設計のプロセスで極めて重要な、薬分子とターゲットとなる生体高分子の結合の親和性を物理化学的な視点から理解できるようになる。分子動力学計算法など計算科学的な手法を活用することによって、分子の会合に伴うギブズエネルギー変化、定圧比熱変化などの熱力学量を計算する方法を習得すると共に、分子の立体構造に基づいて熱力学量変化を理解できるようになる。 (ディプロマ・ポリシー:3,4)

到達目標 (SBOs):

- 1. 多波長異常分散法による X 線結晶構造解析法を理解し実践に応用できる。
- 2. バーチャルスクリーニングによるリード化合物の探索法を理解できる。
- 3. 立体構造に基づく医薬分子の構造設計を理解し実践に応用できる。
- 4. 分子動力学法の基本原理を理解し実践に応用できる。
- 5. 分子動力学法を使って薬物の熱力学量を算出する方法を理解できる。

回数	曜	時限	講座・分野	担	当	者	内	容
							多波長異常分散法の原理	里
1	水	1	構造生物薬学分野	野中	孝昌	教授	1. 多波長異常分散法を対	始めとする位相決
							定の方法を説明できる。	

	1			1			
							事前学習:教科書等でX線結晶構造解析
							の復習をしておくこと。
							事後学習:多波長異常分散法の原理と適
							用例を整理しておくこと。
							蛋白質・薬物複合体の立体構造
							1. 蛋白質・薬物複合体形成原理を立体構
							造の点から説明できる。
2	水	1	構造生物薬学分野	野中	孝昌	教授	事前学習:教科書等で分子間相互作用の
							復習をしておくこと。
							事後学習:タンパク質の立体構造と薬物
							複合体形成原理を整理しておくこと。
							Computer-Aided Drug Designの概要
							1. CADD について例を挙げて説明できる。
				= →	+v. FI	+/	事前学習:配付資料に目を通しておくこ
3	水	1	構造生物薬学分野	野甲	孝昌	教授	と。
							事後学習:CADDの概要を整理しておくこ
							と。
							CADD の計算手法
							1.CADD の計算手法について概説できる。
							事前学習:配付資料に目を通しておくこ
4	水	1	構造生物薬学分野	野中	孝昌	教授	と。
							事後学習:CADD の概要を整理しておくこ
							と。
							CADD の応用例(1)
							1.CADDの実際の適用例について説明でき
							る (1)。
5	水	1	構造生物薬学分野	野中	孝昌	教授	 事前学習:配付資料に目を通しておくこ
							٤.
							 事後学習:CADD の概要を整理しておくこ
							٤.
							CADD の応用例(2)
							1.CADDの実際の適用例について説明でき
							3 (2)
6	水	1	構造生物薬学分野	野中	孝昌	教授	・ 、 - /。 事前学習:配付資料に目を通しておくこ
	/,`	•		-1	, _□	3/1/X	
							こ。 事後学習:CADD の概要を整理しておくこ
							と。

7	水	1	構造生物薬学分野	野中	孝昌	教授	分子動力学法の基本原理 1. 分子軌道法計算の基本原理を説明できる。 事前学習: 教科書等で分子軌道法の復習をしておくこと。 事後学習: 分子軌道法の基本原理を整理しておくこと。
8	水	1	構造生物薬学分野	野中	孝昌	教授	分子動力学法の使用法 1. 分子軌道法計算のプログラムを使用できる。 事前学習:分子軌道法計算プログラムのマニュアルに目を通しておくこと。 事後学習:与えられた課題に従い計算を行うこと。
9	水	1	構造生物薬学分野	野中	孝昌	教授	熱力学量の計算方法 1. 結合における、ギブズエネルギー変化 と定圧比熱変化の計算方法を説明できる。 事前学習:教科書等でギブズエネルギー の復習をしておくこと。 事後学習:与えられた課題に従い計算を 行うこと。
10	水	1	構造生物薬学分野	野中	孝昌	教授	熱力学量と立体構造 1. 分子の立体構造に基づいて熱力学量変化を理解できる。 事前学習:教科書等でエントロピーとエンタルピーの復習をしておくこと。 事後学習:与えられた課題に従い計算を行うこと。

課題 (50 %) とレポート (50 %) で総合的に評価する。

特記事項 (事前学修等)

電子ファイルで提出されたレポートは、添削した上で助言を書き加えて返却する。各授業に対する事前学修(予習・復習)の時間はそれぞれ75分程度を要する。

創薬有機化学特論

責 任 者 : 河野 富一 教授 担当講座・分野 : 創薬有機化学分野

 講義
 8回

 単位
 1単位

期間

前期

学習方針

基本理念:

医療従事者が互いに協力するチーム医療において、薬剤師は、医薬品を化学で理解する能力をもつ唯一の存在である。その能力を最大限活用することがチームへの貢献であり、より良い医療を提供することに繋がっていく。本講義では、既存の創薬研究を例に、この薬剤師固有の能力を臨床の現場で十分活用するための実践的方法論を確立する。

教育成果 (アウトカム):

化学構造式から得られる情報をもとに、生体分子や他の薬物との相互作用を類推する方法を学ぶことで、創薬における有機化学の重要性及び有機分子と生体分子との相互作用による医薬品の作用発現について理解を深めるとともに、医薬品を化学で理解する能力をより高度で実践的なものにすることができる。 (ディプロマ・ポリシー: 2, 3, 4)

到達目標 (SBOs):

- 1. 医療現場における"有機化学"の重要性を理解し解説することができる。
- 2. 有機分子と生体分子との相互作用を解析できる。
- 3. 化学構造式から、薬効発現に必要な情報を類推できる。

回数	曜	時限	講座・分野	担	当	者	内容
	火	2		河野		教授	医療現場における"有機化学"の重要性
							1. 医療現場における"有機化学"の重要
							性を理解し解説することができる。
1			創薬有機化学分野		富一		事前学習:学部における関連科目の教科
							書を見ておくこと。
							事後学習:講義で用いた資料や問題で復
							習すること。
							有機分子と生体分子との相互作用1
			1 創薬有機化学分野	河野	富一	教授	1. 有機分子と生体分子との相互作用を解
2	木	1					析できる。
							事前学習:学部における関連科目の教科
							書を見ておくこと。

							事後学習:講義で用いた資料や問題で復
							習すること。
							有機分子と生体分子との相互作用 2
							1. 有機分子と生体分子との相互作用を解
							析できる。
3	火	2	創薬有機化学分野	河野	富一	教授	事前学習:学部における関連科目の教科
							書を見ておくこと。
							事後学習:講義で用いた資料や問題で復
							習すること。
							化学構造式からの薬効類推法 1
							1. 化学構造式から、薬効発現に必要な情
							報を類推できる。
4	火	2	創薬有機化学分野	河野	富一	教授	事前学習:学部における関連科目の教科
							書を見ておくこと。
							事後学習:講義で用いた資料や問題で復
							習すること。
							化学構造式からの薬効類推法2
							1. 化学構造式から、薬効発現に必要な情
	火		2 創薬有機化学分野	河野	富一	教授	報を類推できる。
5		2					事前学習:学部における関連科目の教科
							書を見ておくこと。
							事後学習:講義で用いた資料や問題で復
							習すること。
							化学構造式からの薬効類推法3
							1. 化学構造式から、薬効発現に必要な情
							報を類推できる。
6	火	2	2 創薬有機化学分野	河野	富一	教授	事前学習:学部における関連科目の教科
							書を見ておくこと。
							事後学習:講義で用いた資料や問題で復
							習すること。
							化学構造式からの薬効類推法4
							1. 化学構造式から、薬効発現に必要な情
							報を類推できる。
7	火	2	創薬有機化学分野	河野	富一	教授	事前学習:学部における関連科目の教科
							書を見ておくこと。
							事後学習:講義で用いた資料や問題で復
							習すること。

							まとめ
							事前学習:これまでの講義資料等を見て
8	火	2	創薬有機化学分野	河野	富一	教授	おくこと。
							事後学習:講義で用いた資料や問題で復
							習すること。

講義内での討議の内容(約90%)、レポート内容(約10%)をもとに総合的に評価する。

特記事項 (事前学修等)

各授業に対する事前学修(予習・復習)の時間はそれぞれ 4 時間程度を要する。詳細な予習・ 復習の方法を初回講義時に説明する。

講義内容の理解度を確認するためにレポート等の課題提出を求めることがある。提出された課題については採点後に返却し、次回講義時にフィードバックする。

応用生化学特論

責 任 者 : 中西 真弓 教授 担当講座・分野 : 機能生化学分野

講義 8回

単位 1単位

期間

前期

学習方針

基本理念:

応用生化学では、薬学部で既習の生化学の基礎知識をもとに、生体膜と輸送の分子機構や、酵素の触媒機構、輸送体や酵素が関与する生命現象を例に取り、生化学的な解析法を学ぶ。また、関連する学術論文を輪読・討論することにより、最新の知見を理解すると同時に、薬学研究者として必要な論理的思考方法と研究の進め方を学ぶ。

教育成果 (アウトカム):

生命を解析する手法の一つとして、生化学的な解析とはどのようなものであるか、その考え方、 およびその研究方法を理解することにより、実践できるようになる。

具体的には、液胞型 ATPase による細胞内外の酸性化や、ATP 合成酵素によるプロトン輸送の分子機構について一分子の酵素の動きの観察により得られた知見に関して学ぶことにより、生化学的な解析方法や論理的な考え方が修得できる。上述のテーマに関する学術論文の実験データを元に得られた結果や意義について理解することにより、実践に応用できるようになる。

(ディプロマ・ポリシー:1,2,3,4)

到達目標 (SBOs):

- 1. 生化学に関する実験データについて科学的に考察できる。
- 2. プロトンポンプ等の輸送体と輸送体が関わる生命現象の生化学的解析手法について理解し 実践に応用できる。
- 3. 酵素一分子の動きを観察する手法を理解し実践に応用できる。
- 4. 液胞型 ATPase による細胞内外の酸性化の生理学的意義を評価できる。

	•						
回数	曜	時限	講座・分野	担	当	者	内容
1	木	2	機能生化学分野	中西	真弓	教授	プロトンポンプ F-ATPase の回転触媒機構 1. 生化学に関する実験データについて科学的に考察できる。 事前学習:指定された論文や資料を熟読する。 事後学習:講義内容を復習する。
							予 以 日 · 時 秋 1 1 で 日 / 3 3

2	木	2	機能生化学分野	中西	真弓	教授	酵素一分子を観察する実験系 1. 酵素一分子の動きを観察する手法を理解し実践に応用できる。 事前学習:指定された論文や資料を熟読する。 事後学習:講義内容を復習する。
3	木	2	機能生化学分野	中西	真弓	教授	プロトンポンプ F-ATPase の役割 1. F-ATPase の微生物における役割を理解できる。 2. F-ATPase の役割を解析する生化学的手法を理解できる。 事前学習:指定された論文や資料を熟読する。 事後学習:講義内容を復習する。
4	木	2	機能生化学分野	中西	真弓	教授	生体分子を標的とした創薬にむけて(1) 1. F-ATPaseの阻害剤を検索する実験系を理解し実践できる。 事前学習:指定された論文や資料を熟読する。 事後学習:講義内容を復習する。
5	木	2	機能生化学分野	中西	真弓	教授	液胞型 ATPase による細胞内外の酸性化 1. 液胞型 ATPase による細胞内外の酸性 化の生理学的意義を評価できる。 事前学習:指定された論文や資料を熟読 する。 事後学習:講義内容を復習する。
6	木	2	機能生化学分野	中西	真弓	教授	液胞型 ATPase の役割 1. 液胞型 ATPase の骨吸収、がん細胞の転移、インスリン分泌などにおける役割を理解できる。 2. 液胞型 ATPase の役割を解析する生化学的手法を理解できる。 事前学習:指定された論文や資料を熟読する。 事後学習:講義内容を復習する。
7	木	2	機能生化学分野	中西	真弓	教授	生体分子を標的とした創薬にむけて(2) 1. 液胞型 ATPase の阻害剤を検索する実 験系を理解し実践できる。

							事前学習:指定された論文や資料を熟読
							尹則子自・相足された冊大で具材を松前
							し、論文紹介の準備をする。
							事後学習:講義内容を復習する。
							プロトンポンプ ATPase に関する学術論
							文の紹介と討論
							1. 生化学に関する実験データについて科
					学的に考察できる。		
							2. プロトンポンプ ATPase を解析する手
8	木	2	松外什么产八里	+=	古口	粉坛	法を理解し実践に応用できる。
0	/\	2	機能生化学分野	中四	真弓	教授	3.プロトンポンプ ATPase による細胞内
							外の酸性化の生理学的意義を評価できる。
						4. 学術論文を紹介し、適切に討論できる。	
							事前学習:指定された論文や資料を熟読
							し、論文紹介の準備をする。
							事後学習:講義内容を復習する。

レポート (60%)、講義中の討論 (15%)、口頭試問 (25%) により評価する。

特記事項 (事前学修等)

予習・復習:講義資料、ノートなどを用いて復習しておくこと。また、予習の必要は特にないが、論文等の事前配布資料のあった場合には、内容を把握しておくこと。各授業に対する事前学修(予習・復習)の時間は4時間程度を要する。講義中の討論、口頭試問については、その講義中にフィードバックを行う予定である。

生命科学画像解析特論

責 任 者 : 白石 博久 特任教授

担当講座·分野 : 生体防御学分野

講義 8回

単位 1単位

期間

後期

学習方針

基本理念:

生命科学研究が、核酸・タンパク質・脂質・糖をはじめ、様々な代謝産物をも対象とした分子レベルの現象を中心に展開するようになって久しい。これらの生体分子の局在や動態、あるいは分子間の相互作用を可視化するために、種々の顕微鏡技術や可視化プローブの開発が進み、着目する組織・細胞の微細な形態のみならず、そこに局在する個々の分子の挙動を説得力のある映像、動画として取得し、共有できる時代となっている。本科目では、履修者の大学院研究におけるイメージング技術を活用した研究アイディア立案の一助となるべく、古今のバイオイメージング技術の基礎と応用例を概説する。

教育成果(アウトカム):

生命科学における様々なイメージング技法について理解することで、説得力のある画像データ に裏打ちされた質の高い医薬学研究を行うための基礎的知識を身につけることができる。

(ディプロマ・ポリシー: 1, 2, 3, 4)

到達目標 (SBOs):

- 1. 生命科学イメージング技法を列挙できる。
- 2. 光学顕微鏡の原理と用途を説明できる。
- 3. 蛍光顕微鏡・共焦点レーザー顕微鏡・多光子励起顕微鏡の原理と応用を説明できる。
- 4. 生体分子を可視化するための染色や蛍光・酵素標識の手法や用途を説明できる。
- 5. 電子顕微鏡の原理と特徴を説明できる。
- 6. 先端的なイメージング技術とその特徴を説明できる。
- 7. 関連論文を読み、内容を理解した上で説明・討論できる。
- 8. イメージング技術の医薬学研究における重要性を理解し、自身の研究への応用例を挙げられる。

回数	曜	時限	講座・分野	担 当 者	内容
1	金	5	生体防御学分野	白石 博久 特任教授	様々な生命科学イメージング技法 1. 生命科学イメージング技法を列挙で きる。 事前学習:これまでに学んだ、もしくは 実際に活用したイメージング技術に関 して整理しておく。 事後学習:講義内容を復習する。
2	金	5	生体防御学分野	白石 博久 特任教授	光学顕微鏡とレーザー顕微鏡 1. 光学顕微鏡の原理と用途を説明できる。 2. 蛍光顕微鏡・共焦点レーザー顕微鏡・多光子励起顕微鏡の原理と応用を説明できる。 事前学習:蛍光顕微鏡について予習しておく。 事後学習:講義内容を復習する。
3	金	5	生体防御学分野	白石 博久 特任教授	生体分子を可視化する手法を用いた光 学顕微鏡観察 1. 光学顕微鏡の用途を説明できる。 2. 蛍光顕微鏡・共焦点レーザー顕微鏡・ 多光子励起顕微鏡の応用を説明できる。 3. 生体分子を可視化するための染色や 蛍光・酵素標識の手法や用途を説明できる。 事前学習:生体分子を可視化するための 染色や蛍光・酵素標識の手法について、 可能な範囲で予習しておく。 事後学習:講義内容を復習する。
4	金	5	生体防御学分野	白石 博久 特任教授	電子顕微鏡観察 1. 電子顕微鏡の原理と特徴を説明できる。 事前学習:透過型と走査型の電子顕微鏡の違いについて整理しておく。 事後学習:講義内容を復習する。
5	金	5	生体防御学分野	白石 博久 特任教授	先端的イメージング技術 1. 先端的なイメージング技術とその特 徴を説明できる。 事前学習:超高解像度蛍光顕微鏡、クラ

					イオ電子顕微鏡、イメージング質量顕微
					鏡などの高度・先端的イメージング技術
					について調べる。
					事後学習:講義内容を復習する。
					イメージング技術を活用した研究論文
					の読解 1
					1. 関連論文を読み、内容を理解した上で
6	^	۲	4- /+-/ /大⁄/ // mマ	ウナ 捕り 性だ 数極	説明・討論できる。
6	金	5	生体防御学分野	白石 博久 特任教授	事前学習:履修者が興味を持ったイメー
					ジング技術を活用した研究論文の検索
					を行う。
					事後学習:論文を読む。
					イメージング技術を活用した研究論文
					の読解 2
				白石 博久 特任教授	1. 関連論文を読み、内容を理解した上で
7	金	5	生体防御学分野		説明・討論できる。
					事前学習:研究論文を読み、他者に説明
					できるよう準備する。
					事後学習:関連論文を更に検索する。
					自身の研究テーマへの応用例の提案
					1. イメージング技術の医薬学研究にお
					 ける重要性を理解し、自身の研究への応
					用例を挙げられる。
8	金	5	生体防御学分野	白石 博久 特任教授	 事前学習:自身の研究テーマに活用しう
					るイメージング技術のアイディアを考
					える。
					事後学習:講義内容を復習する。
					, M, II - III, M, , II C M II / 00

レポート (70%)、口頭試問 (30%) から総合的に評価する。

特記事項 (事前学修等)

授業に対する事前学修 (予習・復習)の時間は4時間程度を要する。 提出されたレポートについては、内容を確認、添削した後、返却する。

分子病態解析学セミナー

責任者: 那谷耕司教授

担当講座·分野 : 臨床医化学分野、薬学教育学分野

講 義 60 回

単位 8単位

期間

通年

学習方針

基本理念:

糖尿病、生活習慣病、炎症性疾患、再生医学等に関する原著論文を講読、解説する。また医療薬学特別研究での研究成果を発表し、教員、大学院生等と討論を行う。

教育成果 (アウトカム):

原著論文の講読、解説を通して、生活習慣病、炎症性疾患、再生医学の領域における最新の知見、研究方法を習得するとともに、医療薬学特別研究で実施される研究の遂行に役立てることができる。また研究成果の発表を通して、医療薬学特別研究における研究テーマへの理解を深め、研究の効果的な進展を図ることができる。

(ディプロマ・ポリシー:1, 2, 3, 4)

到達目標 (SBOs):

- 1. 糖尿病および生活習慣病における最新の知見、研究方法を取得することができる。
- 2. 炎症性疾患における最新の知見、研究方法を取得することができる。
- 3. 再生医学における最新の知見、研究方法を取得することができる。
- 4. 医療薬学特別研究における研究テーマへの理解を深め、研究の効果的な進展を図ることができる。

コマ数	講座・分野	担	当	者	内容
					病態医化学に関連した原著論文の読解と医療薬学
					特別研究における研究成果の発表
					1. 病態医化学に関連した原著論文を読解し、それ
					をまとめて発表することができる。
					2. 糖尿病および生活習慣病に関する総説や原著論
60	臨床医化学分野	那谷	耕司	教授	文を読解し、糖尿病および生活習慣病の病態・治
					療に関する最新の知見を理解するとともに、現在
					の問題点を指摘することができる。
					3. 医療薬学特別研究における研究成果の発表と討
					論を行うことで、研究テーマへの理解を深めると
					もに、研究の効果的な進展を図ることができる。

60	薬学教育学分野	奈良場	博昭	教授	最新の医療及び薬学研究の原著論文の読解と発表 1. 炎症性疾患の病態を解析した原著論文を読解 し、それをまとめた資料を作成して発表すること ができる。 2. 再生医療に関する総説や原著論文をもとに、現 状を理解するとともに、問題点を指摘し、その改善案を示すことができる。 3. 難病指定されている炎症性疾患のガイドライン や専門学会の指針をまとめ、最新の薬物療法や治療方法に関して、プレゼンテーションを行い、質 疑応答することができる。
----	---------	-----	----	----	---

レポート(40%)、論文抄読(10%)、研究成果発表(50%)から総合的に評価する。

特記事項 (事前学修等)

学部で学んだ糖尿病および生活習慣病、神経疾患、炎症性疾患の病態、検査、治療および再生 医学については、再確認しておくと理解の助けになります。授業の内容については、できるだけ その日のうちに整理、復習しておくこと。事前学修はこれらの内容のほか、担当者から授業にお いて指示があった場合にはそれに従うこと。

各授業に対する事前・事後学修(予習・復習)の時間は4時間程度を要する。

提出されたレポートについては、内容を確認、添削した後、返却する。

分子薬効解析学セミナー

責任者: 三部 篤 教授

担当講座・分野 : 分子細胞薬理学分野、薬剤治療学分野

講 義 60 回

単位 8単位

期間

通年

学習方針

基本理念:

治療薬の効果(薬効)を解析するためには、分子レベルから個体レベルまでの生体に対する薬 効情報を統合することが必要不可欠である。本セミナーでは、治療薬、およびその薬効解析に関 する資料、原著論文等を講読、解説し、これらの領域における最新の知見、研究方法を習得する とともに、医療薬学特別研究で実施される研究の遂行に役立てる。また医療薬学特別研究での研 究成果を発表し、教員、大学院生等と討論することで研究テーマへの理解を深め、研究の効果的 な進展を図る。

教育成果 (アウトカム):

最新の治療薬、およびその薬効解析に関する情報を収集し、理解できる。医学薬学領域における最新の知見、研究方法を説明し、実践できる。 (ディプロマ・ポリシー:1,2,3)

到達目標 (SBOs):

- 1. 薬効に関する最新の原著論文の内容を理解し実践に応用できる。
- 2. 薬効に関する最新の知見を、解説できる。
- 3. 医学薬学関連分野の英論文などの内容を理解し実践に応用できる。

コマ数	講座・分野	担	当	者	内容
					治療薬およびその薬効解析に関する資料、原著論
				ļ	文等を講読、解説する。
					1. 代謝系疾患の治療薬の薬効を解析した原著論文
					を読解し、それをまとめた資料を作成して発表す
	分子細胞薬理学分野				ることができる。
CO		11、海	π/4-±/	#/L-\FX	2. 代謝系疾患の治療薬の薬効の現状を理解すると
60		弘瀬	作教	教授	ともに、問題点を指摘し、その改善案を示すこと
					ができる。
					3. 代謝性疾患のガイドラインや専門学会の指針を
					まとめ、薬効の観点から最新の薬物療法や治療方
					法に関して、プレゼンテーションを行い、質疑応
					答することができる。

					薬効解析学関連の原著論文の読解と発表
	60 薬剤治療学分野 三部 篤 教授				1. 薬効に関する最新の原著論文の内容を理解し実
60		学を	践に応用できる。		
60		<u>一</u> 申b	馬	教授	2. 薬効に関する最新の知見を、解説できる。
					3. 医学薬学関連分野の英論文などの内容を理解し
					実践に応用できる。

出席(20%)、発表態度(30%)、レポート(50%)より総合的に判断する。

特記事項 (事前学修等)

各授業に対する事前学修(予習・復習)の時間は4時間程度を要する。事前学修は、薬効解析学分野の学部教科書の該当する項目を確認するほか、毎回の授業にて行う担当者の指示に従うこと。提出されたレポートにはコメントを付記し、適宜フィードバックを行う。

薬物療法解析学セミナー

責 任 者 : 佐塚 泰之 教授

担当講座·分野 : 創剤学分野、薬物代謝動態学分野、衛生化学分野、臨床薬剤学分野、

地域医療薬学分野

講 義 60回

単位 8単位

期間

通年

学習方針

基本理念:

疾病の治療は、医師による診断後の薬物療法が中心となる。そこで使用される医薬品は様々な 基礎技術の集約であり、特定の側面でなく複合的な角度からの解析が不可欠である。また、この 分野の最新の知見を得ることは、臨床治療の発展に必須である。本セミナーは医療薬学特別研究 (薬物療法解析学)の研究遂行に多方面からの知見を生かすことを目的とする。

教育成果 (アウトカム):

薬物送達学、医薬品薬効動態学、ゲノム情報薬学、分子腫瘍学、がん薬物療法学、臨床分子薬品学などに関する原著論文を読解し、これらの領域における最新の知見、研究方法を習得することにより、医療薬学特別研究(薬物療法解析学)で実施される研究が遂行できる。また医療薬学特別研究(薬物療法解析学)での研究成果を発表し、教員、大学院生等と討論することで、研究テーマへの理解を深め研究の効果的な進展が可能になる。 (ディプロマ・ポリシー:1,2,3,4) 到達目標(SBOs):

- 1. 薬物送達学の最新の知見を理解するとともに原著論文を理解し解説できる。
- 2. 医薬品薬効動態学の最新の知見を理解するとともに原著論文を理解・評価できる。
- 3. ゲノム情報薬学の最新の知見を理解するとともに原著論文を理解・評価できる。
- 4. 分子腫瘍学の最新の知見を理解するとともに原著論文を理解・評価できる。
- 5. がん薬物療法学の最新の知見を理解するとともに原著論文を理解・評価できる。
- 6. 臨床分子薬品学の最新の知見を理解するとともに原著論文を理解・評価できる。
- 7. 医療薬学特別研究の研究成果を発表できる。

コマ数	講座・分野	担	当	者	内容
60	創剤学分野	佐塚山	泰 育美		薬物送達学の最新の知見の理解、薬物送達学の技術を応用した臨床での薬物治療に関する最新の知見の理解、原著論文の読解と発表1.物理薬剤学、製剤学に関する原著論文を読解し、現在の剤形の基本及び問題点を理解することにより改善方法を提案できる。2.薬物送達学に関する原著論文を読解し、既存製剤の改善に関する基礎を理解できる。3.既存の治療法における問題点の抽出と問題解決に至った経緯を説明できる。4.薬物キャリアの基本を理解し、原著論文の内容を批判的に吟味できる。5.原著論文の内容を理解し、自分の研究テーマとのつながりを認識の上、研究に展開できる。6.学際領域から成り立っている最新の薬物送達学に関する研究をまとめ、プレゼンテーションを行い、質疑応答できる。
60	薬物代謝動態学分野	小澤	正吾潤	教授助教	医薬品薬効動態学の最新の知見の理解、および原著論文の理解と評価 1. 医薬品の体内動態に影響する薬物代謝酵素、薬物トランスポーター等の遺伝子多型について解析した原著論文を読解し、それをまとめた資料を作成して発表することができる。 2. 薬物代謝酵素や薬物トランスポーターの遺伝子発現調節に関する原著論文を読み、発現調節機構別(遺伝子の塩基配列によって規定される機構とそうではない機構)に発表することができる。 3. 薬物受容体の機能に影響を及ぼす薬物受容体遺伝子の多型に関する原著論文を読解し、薬効や副作用との関係をまとめて発表することができる。
60	臨床薬剤学分野	工藤	製二	教授	臨床腫瘍学やがん薬物療法に関連した最新の知見の理解、原著論文の読解と発表 1. 臨床腫瘍学やがん薬物療法に関する原著論文を読解し、批判的に評価できる。 2. 臨床腫瘍学やがん薬物療法に関する最新の研究をまとめ、プレゼンテーションを行い、質疑応答できる。

60	臨床薬剤学分野	朝賀 純一 准教授	感染症学や医薬品の安全性に関連した最新の知見の理解、原著論文の読解と発表 1. 感染症学や医薬品の安全性に関する原著論文を読解し、批判的に評価できる。 2. 感染症学や医薬品の安全性に関する最新の研究をまとめ、プレゼンテーションを行い、質疑応
			光をよとめ、プレセンケーションを打い、質疑心 答できる。
60	地域医療薬学分野	高橋 寛 教授	日本と諸外国における医療システムと薬剤師の活動の質の評価に関する原著論文の読解と解説および討論 1. 地域医療における薬剤師活動の最新の知見を理解し、薬剤師業務の見える化にどのような手法があるか原著論文を理解し解説できる。
60	地域医療薬学分野	松浦 誠 特任教授	地域医療や諸外国の医療システムに関する原著論 文の読解と解説および討論 1. 地域医療に関する最新の知見を理解するととも に原著論文を理解し解説できる。
60	衛生化学分野	杉山 晶規 教授	分子腫瘍学分野に関する学術論文からの最新の知見を把握し、論文の内容を理解・評価できる。 1. 学術論文の内容を理解し、研究経緯と最近の研究における位置づけを把握し説明できる。 2. 学術論文の内容について発表用の資料を作成、発表し、教員や他の大学院生と議論できる。 3. 学術論文に記載された実験方法を理解し、研究に応用できる。
60	薬物代謝動態学分野	幅野 渉 准教授	ゲノム・エピゲノム情報に関する薬学研究論文の 読解と発表 1. ゲノム・エピゲノム情報を対象とした基礎研究 または臨床研究に関する原著論文の内容を理解 し、批判的に吟味できる。

聴講態度(40%)、レポート(60%)より総合的に判断する。

特記事項 (事前学修等)

各授業に対する事前学修(予習・復習)は4時間程度を要する。事前学修の内容については、 担当者が毎回の授業にて行う指示に従うこと。提出されたレポートは、各担当者が専門領域の観 点からコメントし、適宜フィードバックする、

原著論文のプレゼンテーション後、論文の解釈に関し指導するとともに各自の研究への展開に 関しコメントする。

創薬基盤薬学セミナー

責任者:野中孝昌教授

担当講座·分野 : 構造生物薬学分野、創薬有機化学分野、情報薬科学分野

講 義 60 回

単位 8単位

期間

通年

学習方針

基本理念:

自己の研究テーマに関連する原著論文を講読・紹介し、最新の知見や技術に触れるとともに自己の研究テーマの遂行に役立てる。また、自己の研究成果を発表し、相互に討論することを通して、研究テーマの効果的な展開を図る。

教育成果 (アウトカム):

主に有機合成化学および構造生物学に関連する学術雑誌の中から、創薬候補化合物の発見、精製、合成、およびドッキングシミュレーションなど、あるいはドラッグデザインについて報告した原著論文を講読・紹介する。また、自己の研究内容について、継続的に発表を行い、討論をすることによって、研究テーマの効果的な展開を図ることが出来るようになる。

(ディプロマ・ポリシー:3,4)

到達目標 (SBOs):

- 1. 原著論文を理解し重要な点を解説できる。
- 2. 原著論文から必要な情報を収集し、自己の研究に活用できる。
- 3. 自己の研究を適切に表現できる。
- 4. 包括的な討論、多角的な観点からの質疑応答ができる。
- 5. 討論した内容を自己の研究に還元できる。

コマ数	講座・分野	担	当	者	内容
	構造生物薬学分野	野中	* .F		創薬における構造生物学的手法に関連するいくつ
				教授	かの原著論文を輪読することによって、
					1. 原著論文を理解し重要な点を解説できるように
60					なる。
00			子曰		2. 原著論文から必要な情報を収集し、自己の研究
					に活用できるようになる。
					3. 自己の研究を適切に表現できるようになる。
					4. 包括的な討論、多角的な観点からの質疑応答が

			できるようになる。
			, •
			5. 討論した内容を自己の研究に還元できるように
			なる。
			同時期に履修している生命薬学特別研究を円滑に
			進めるために必要な原著論文を収集し、その論文
			に書かれてある情報を読み解き、紹介する。さら
			に、得られた情報を自らの研究に生かす。
			1. 原著論文を理解し重要な点を解説できる。
60	創薬有機化学分野	河野 富一 教授	2. 原著論文から必要な情報を収集し、自己の研究
			に活用できる。
			3. 自己の研究を適切に表現できる。
			4. 包括的な討論、多角的な観点からの質疑応答が
			できる。
			5. 討論した内容を自己の研究に還元できる。
	60 情報薬科学分野		原著論文の読解と発表
		西谷 直之 教授	1. 文献データベース等を利用して、紹介する原著
			論文を検索できる。
			2. 原著論文を紹介するための、資料を作成できる。
			3. 原著論文を読解し、要点を解説できる。
60			4. 文献情報から問題点を指摘し、その改善案を示
			すことができる。
			5. 複数の文献情報をもとに、現状を把握し、自身
			の研究の位置づけを説明できる。
			6. 自身の研究についてプレゼンテーションし、適
			切な質疑応答ができる。
			原著論文の購読、紹介及び研究発表
			1. 原著論文を理解し重要な点を解説できる。
			2. 原著論文から必要な情報を収集し、自己の研究
60	構造生物薬学分野	阪本 泰光 准教授	に活用できる。
			3. 自己の研究を適切に表現できる。
			4. 包括的な討論、多角的な観点からの質疑応答が
			できる。
			5. 討論した内容を自己の研究に還元できる。

原著論文に関するレポート (50 %)、プレゼンテーション (25 %)、および討論の内容 (25 %) で総合的に評価する。

特記事項 (事前学修等)

授業に対する事前学修 (予習・復習)の時間はそれぞれ2時間程度を要する。事前学修の内容、毎回の授業にて行う担当者の指示に従うこと。原著論文の購読及び紹介、また研究発表に関しては、授業時間内に目標に到達できる程度の適切な準備を行っておかなければならない。レポートは電子ファイルで受け付け、アドバイスを書き加えて返却する。

生命機能科学セミナー

責 任 者 : 中西 真弓 教授

担当講座・分野 : 生体防御学分野、機能生化学分野、分析化学分野、臨床医化学分野

講 義 60回

単位 8単位

期間

通年

学習方針

基本理念:

専門性を深め、さらにその専門の周辺領域に対しても見識を身につけることを目指す。生命機能の中でも、遺伝子発現の制御や細胞内タンパク質動態、膜輸送などに関する原著論文を講読・紹介し、その領域の最新の知見や技術に触れるとともに自己の研究テーマの遂行に役立てる。また、自己の研究成果を発表し、相互に討論することを通して、研究テーマの効果的な展開を図る。教育成果(アウトカム):

生命機能に関する原著論文を講読・紹介し、最新の知見や技術に触れるとともに、自己の研究 テーマの遂行に役立てることができる。自己の研究成果を発表し、相互に討論し、研究テーマの 効果的な展開ができるようになる。 (ディプロマ・ポリシー: 3,4)

到達目標 (SBOs):

- 1. 原著論文を理解し重要な点を解説できる。
- 2. 原著論文から必要な情報を収集し、自己の研究に活用できる。
- 3. 自己の研究を適切に表現できる。
- 4. 包括的な討論、多角的な観点からの質疑応答ができる。
- 5. 討論した内容を自己の研究に還元できる。

コマ数	講座・分野	担	当	者	内容
					高次生命機能研究に関する原著論文の読解と発表
					1. 老化、生体防御、環境応答などの高次生命機能
					を支える遺伝子機能に関する原著論文を読解し、
			綾子	W-14	その要点をまとめて発表することができる。
60	开保供知学八 取	上 括			2. 高次生命機能に関する総説や原著論文をもと
00	生体防御学分野	大橋		教授	に、その歴史と最新の知見を理解するとともに、
					課題解決や医薬応用に向けて、自らの見解を述べ
					ることができる。
					3. 自らの研究と関連する原著論文を活用して発表
					を行い、包括的に討論することができる。

60	機能生化学分野	中西 真弓 教授	薬学研究に関する最新の原著論文の読解、および自己の研究と関連付けた発表 1. プロトンポンプが関わる生命現象や疾患に関する最新の原著論文の読解し、内容をまとめることができる。 2. 研究の現状を理解し、問題点を指摘することができる。 3. 自己の研究と取り上げた論文を関連付けてプレゼンテーションを行い、質疑応答することができる。
60	生体防御学分野	白石 博久 特任教授	最新の生命科学研究およびその医薬応用研究に関する原著論文の読解と発表 1. 生体分子の細胞内輸送、細胞内異物分解系に関する原著論文を読解し、要点を説明できる。 2. 細胞内物質分解、代謝異常に起因する希少疾患に関する原著論文を読解し、治療や創薬を指向した視点を見出すことができる。 3. 最新の遺伝子改変技術に関する原著論文を読解し、生命科学研究における有用性と問題点をまとめて発表し、他者と議論できる。
60	分析化学分野	藤本 康之 准教授	最近の医学・生物学、および、薬学分野における研究論文(原著論文および総説)の読解と発表 1.生化学、分子生物学、細胞生物学、および、分析化学等の研究分野における新規な知見を掲載した原著論文および総説を詳読し、内容を正確に理解することができる。 2.1で挙げた論文の内容を批判的に考察し、研究上の問題点を指摘し、その改善法を提案ことができる。必要に応じて、関連論文を検索・収集することができる。 3. 医学・生物学分野の基礎研究における新たな発見を、将来的な治療法、医療用医薬品、疾患診断法の開発に結びつけて考察することができる。 4. 上記の1. ~3. をまとめた資料を作成し、発表(プレゼンテーションおよび適切な質疑応答)することができる。

			分子遺伝学及び分子進化研究の原著論文の読解と 発表
			元衣 1. 分子遺伝学や分子進化学に関する原著論文を読
			解し、それをまとめた資料を作成して発表するこ
			とができる。
60	臨床医化学分野	大橋 一晶 准教授	2. 分子遺伝学や分子進化学に関する総説や原著論
			文をもとに、解析手法を理解するとともに、問題
			点を指摘し、その改善案を示すことができる。
			3. 生命薬学特別研究(生命機能科学)における研
			究成果について、発表・討論を行うことで、研究へ
			の理解を深め、研究の進展に役立てることができる。

作成したプロダクト (50%) 及び発表内容 (50%) から評価する。

特記事項 (事前学修等)

授業に対する事前学修 (予習・復習) の時間は最低 4 時間を要する。事前学修の内容は、毎回 の授業にて各担当者が行う指示に従うこと。作成したプロダクトは、添削やコメントを付けてフィードバックする。

医療薬学特別研究 (分子病態解析学)

責任者: 那谷耕司教授

担当講座・分野 : 臨床医化学分野、薬学教育学分野

実 習 240回

単 位 16 単位

期間

通年

学習方針

基本理念:

博士論文指導教員の指導のもと、糖尿病などの病態解析、炎症のメカニズム解析などを研究テーマに定め、これら研究テーマについての新たな知見を得るための研究活動を行う。

教育成果 (アウトカム):

医療薬学特別研究での研究活動を通して、研究テーマとその周辺領域のおける専門的な知識、研究手法、さらには薬学研究者、臨床薬剤師として必要な科学的思考法を修得することができる。 (ディプロマ・ポリシー:1,3,4)

到達目標 (SBOs):

- インスリン産生膵β細胞の機能・増殖と糖尿病の病態との関連を解析することができる。
- 2. 炎症性疾患に関わる基礎病態を、培養細胞などを用いた分子生物学的手法により解析することができる。
- 3. 実験動物を用いた炎症性病態モデルにおいて、薬理学的手法を応用した検討を実施できる。
- 4. 薬学研究者、臨床薬剤師として必要な科学的思考法を修得できる。

実習日程

コマ数 講座・分野 担 当 者 内 容	容
240 臨床医化学分野 那谷 耕司 教授	ンゲルハンス島 る。 間胞由来の培養細 質能の実験的評価 間胞由来の培養細 ものパラン硫酸

			し、その解析を実践できる。
			4. インスリン産生膵β細胞の機能・増殖と糖尿病
			の病態に関する研究について、その実験結果を解
			析し、まとめることができる。
			5. インスリン産生膵 β 細胞の機能・増殖と糖尿病
			の病態に関する研究について、その実験結果をま
			, , , , , , , , , , , , , , , , , , , ,
			とめて学会等で発表するとともに学術論文を作成
			することができる。
			難治性炎症性疾患の病態解析
	薬学教育学分野		1. 炎症性病態を解析するために、培養細胞を用い
			た実験系を構築し、関与する分子や細胞内情報伝
			達経路を解析できる。
			2. 細胞から分泌される小胞を単離精製し、含有す
			る低分子量 RNA やストレス誘導分子を検索し、そ
			の定量および役割に関して検討することができ
			る。
240		奈良場 博昭 教授	3. 実験動物を用いて、病態モデルを作成し、その
			症状を解析すると共に生体サンプルを採取し、病
			態マーカー等を検出・定量することができる。
			4. 病態モデル動物に薬物を処置し、病態の進行を
			制御する新たな方法の開発に取り組むことが出来る。
			5. 実験結果を解析し、データの解釈や臨床的意義
			を考察し、学術論文や学会発表をとおして学外に
			を考察し、学術論文や学会発表をとおして学外に 発信することができる。

研究活動を主体的に行い、研究成果の学会発表及び学術誌投稿を行うとともに、博士論文の提出をもって評価する。成績評価については、博士論文の内容が 100%となる。

特記事項 (事前学修等)

学部で学んだ知識については、再確認しておくと理解の助けになります。研究の内容、結果については、その日のうちに整理しておくこと。

事前・事後学修 (予習・復習) の時間は最低1時間を要する。事前学修の内容は、毎回の授業で担当者が行う指示に従うこと。

研究成果の学会発表にあたっては事前に予行を行うともに、発表終了後フィードバックを行う。 また博士論文の提出にあたっては、内容を確認、添削した後、提出する。

医療薬学特別研究 (分子薬効解析学)

責 任 者 : 弘瀬 雅教 教授

担当講座·分野 : 分子細胞薬理学分野、薬剤治療学分野

実 習 240回

単 位 16 単位

期間

通年

学習方針

基本理念:

様々な疾病における治療法および治療薬の薬効解析に関する高度専門知識と技能の修得をめざ し、基盤となる分子薬効解析学の基礎研究とその応用、ならびに臨床における医療薬学の教育、 研究、薬剤師活動の推進・展開についての専門性を深める。

教育成果 (アウトカム):

1) 循環器疾患の成因や病態については不明な点が多い事を踏まえて、新たな治療法を開発するためのトランスレーショナル研究(基礎研究成果の臨床応用)を学び、トランスレーショナル研究を説明できるようになる。2) 生体の各組織における特異的細胞の分化に対する薬物およびその他の因子の効果を様々な実験手法を用いて検討し、標的細胞および作用時期、またその分子生物学的メカニズムについて学び、これを実践し説明できるようになる。3) 標的細胞の増殖・分化に必要な栄養因子を、その摂取に働くトランスポーター分子発現プロファイルから同定し、栄養因子が誘発する細胞の増殖または分化メカニズムについて学び、これを実践し説明できるようになる。4) 各種疾患の動物モデルを用いた、組織・細胞・個体レベルでの機能異常の検出、治療標的分子の探索、ならびに候補薬物の薬理作用解析法について学び、これを実践できるようになる。

到達目標 (SBOs):

- 1. トランスレーショナルリサーチについて、具体例を示すことができる。
- 2. 疾患動物モデルを用いた分子生物学的解析法を評価し実施できる。
- 3. 生体内物質(核酸、アミノ酸、糖など)の生体膜透過機構を解説できる。
- 4. 疾患動物モデルを用いた薬理作用解析法を評価し実施できる。

実習日程

コマ数	講座・分野	担 当 者	内容
240	分子細胞薬理学分野	弘瀬 雅教 教授	循環器疾患の心機能解析と薬物の効果解析 1. 循環器疾患モデルを作成し、各種心機能評価法を用いて実践・解析できる。 2. 実験動物から生体サンプルを採取し、病態マーカー等を検出・定量することができる。 3. トランスレーショナル研究を実践し、具体的に説明できる。 4. 循環器疾患モデルを作成して、薬物を投与して各種心機能評価法を用いて実践・解析し、病態の進行を制御する新たな方法の開発に取り組むことが出来る。 5. 実験結果を解析し、データの解釈や臨床的意義を考察し、学術論文や学会発表をとおして学外に発信することができる。
240	薬剤治療学分野	三部 篤 教授	難治性疾患の多くは、正常な立体構造を保てない変性タンパク質がその病態に関わっている。この変性タンパク質を原因とする疾患の病態を分子レベル、細胞レベル、動物レベルで検討し、その知見を基に新規治療法の開発を試みる。 1.疾患モデルを用いた治療法の開発を実践できる。 2.実験データをまとめることができる。 3.実験データの考察ができる。 4.論文作成ができる。 5.成果発表ができる。

成績評価方法

論文抄読(20%)、学会発表(20%)、論文作成(60%)により総合的に評価する。

特記事項 (事前学修等)

研究に対する事前学修 (予習・復習)の時間は最低 60 分を要する。事前学習の内容は毎回の担当者の指示するもののほか、与えられた課題に対する予習を参考書・専門書・科学論文等を用いて行い、それらを再読することで復習とすること。論文抄読、学会発表および論文作成時は、その都度修正点や改善点を指示し、適宜フィードバックする。また、定期的な討論により論文作成における知識と方法の理解を深める。

医療薬学特別研究 (薬物療法解析学)

責 任 者 : 佐塚 泰之 教授

担当講座·分野 : 創剤学分野、薬物代謝動態学分野、衛生化学分野、臨床薬剤学分野、

地域医療薬学分野

実 習 240回 単 位 16単位

期間

通年

学習方針

基本理念:

薬物送達学、医薬品薬効動態学、ゲノム情報薬学、分子腫瘍学、がん薬物療法学、臨床分子薬品学に関する研究の立案、プロトコールの作成、実施、結果のまとめと考察に関し学習するとともに博士論文を作成することを目的とする。

教育成果 (アウトカム):

薬物送達学、医薬品薬効動態学、ゲノム情報薬学、分子腫瘍学、がん薬物療法学、臨床分子薬品学に関する研究課題を設定し、研究の立案からまとめに至る研究スキルを身につけるとともに、学会発表のためのプレゼンテーション、学術誌への論文投稿のための論文作成を通じて博士論文を作成することが可能になる。 (ディプロマ・ポリシー:1,2,3,4)

到達目標 (SBOs):

- 1. 薬物送達学の研究課題を設定し、立案からまとめに至る研究過程を実施できる。
- 2. 医薬品薬効動態学の研究課題を設定し、立案からまとめに至る研究過程を実施できる。
- 3. ゲノム情報薬学の研究課題を設定し、立案からまとめに至る研究過程を実施できる。
- 4. 分子腫瘍学の研究課題を設定し、立案からまとめに至る研究過程を実施できる。
- 5. がん薬物療法学の研究課題を設定し、立案からまとめに至る研究過程を実施できる。
- 6. 臨床分子薬品学の研究課題を設定し、立案からまとめに至る研究過程を実施できる。
- 7. 医療薬学特別研究(薬物療法解析学)での研究成果を学会発表し、討論できる。
- 8. 医療薬学特別研究(薬物療法解析学)での研究成果を学術誌へ論文投稿できる。
- 9. 医療薬学特別研究(薬物療法解析学)での研究成果をもとに博士論文を作成できる。
- 10. 医療薬学特別研究(薬物療法解析学)での博士論文を発表できる。

実習日程

コマ数	講座・分野	担当	者	内容
240	創剤学分野	佐塚 泰之 育美	*************************************	創剤学、物理薬剤学の技術・知識を基盤にした薬物送達学に関する研究、臨床での薬物治療を視野に入れた創剤学及び薬物送達学に関する研究 1. 徐放性製剤及び標的型製剤に使用されている技術を理解し、国内外の臨床及び基礎研究データより問題点を明らかにした上で、新たな研究テーマの立案及びプロトコールに従い適切な機器を選択し、測定ができる。 2. 作成したプロトコールに従い適切な機器を選択し、測定ができる。 3. 情報を収集し、解析されたデータとの関連性や相違点を考察できる。 4. 研究成果を論理的に考察し、議論できる。 5. 基礎実験から得たデータを総合的に考察した上で、応用研究に展開できる。 6. 実験から得たデータをまとめた後、学会等で発表・討論するとともに学術論文を作成し、学術誌に発表できる。 7. 学会発表での討論及び学術論文作成を通じて得た成果・知識をもとに博士論文を作成できる。 8. 研究倫理に関する知識を習得し、研究者としての態度、振る舞いができる。
240	薬物代謝動態学分野	小澤 正吾 青島 潤	教授助教	薬物代謝酵素や薬物トランスポーターの変動要因に関する研究 1. 医薬品の体内動態に影響する薬物代謝酵素、薬物トランスポーター等の遺伝子多型の影響を知るために、培養細胞を用いた実験系を作製して、遺伝子多型の影響を評価することができる。 2. 薬物代謝酵素や薬物トランスポーターの遺伝子発現調節に関し、遺伝子の塩基配列によって規定される機構とそうではない機構について、培養細胞を用いて解析することができる。 3. 実験結果を解析し、データの解釈や臨床的意義を考察しつつ、学術論文や学会発表をとおして学外に発信することができる。

240	臨床薬剤学分野	工藤 賢三 教授	臨床腫瘍学、がん薬物療法、支持療法、副作用制御等に関する臨床および基礎的研究 1. 臨床腫瘍学およびがん薬物療法に関連するクリニカルクエスチョンをリサーチクエスチョンとして研究課題を設定し、研究プロトコールを立案、作成できる。 2. 研究プロトコールに従って、必要な手技を習得するとともに臨床的もしくは基礎的データを収集することができる。 3. 得られたデータを総合的に解析、考察しながら、研究の展開を図ることができる。 4. 研究結果の意味を考察、まとめた後、研究成果を学会等で発表するとともに学術論文を作成、学術誌へ投稿できる。 5. 学会発表および学術論文作成を通じて得た成果・知識をもとに博士論文を作成できる。
240	臨床薬剤学分野	朝賀 純一 准教授	感染症学、薬剤疫学、医薬品の安全性等に関する臨床および基礎的研究 1. 関連するクリニカルクエスチョンをリサーチクエスチョンとして研究課題を設定し、研究プロトコールを立案、作成できる。 2. 研究プロトコールに従って、必要な手技を習得するとともに臨床的もしくは基礎的データを収集することができる。 3. 得られたデータを総合的に解析、考察しながら、研究の展開を図ることができる。 4. 研究結果の意味を考察、まとめた後、研究成果を学会等で発表するとともに学術論文を作成、学術誌へ投稿できる。 5. 学会発表および学術論文作成を通じて得た成果・知識をもとに博士論文を作成できる。
240	地域医療薬学分野	高橋 寛 教授	実践地域医療薬学特論に関する研究の立案・展開・評価 1. 研究を企画し、計画を立案できる。 2. 研究企画書に従いデータ収集を行い、データを適切に取り扱い、研究を展開することができる。 3. 収集したデータの解析および考察をすることができる。

			4. 中間報告を行い、多角的な観点からの質疑へ応答ができる。 5. 質疑応答の結果を踏まえて、研究企画書を再検討し、研究を展開することができる。 6. 研究結果を客観的に考察し評価できる。 7. 研究成果を取りまとめ論文にできる。 8. 研究成果をプレゼンテーションできる。
240	地域医療薬学分野	松浦 誠 特任教授	実践地域医療薬学特論に関する研究の立案・展開・評価 1. 研究を企画し、計画を立案できる。 2. 研究企画書に従いデータ収集のための資料を適切に取り扱い研究を展開することができる。 3. 収集したデータの解析および考察をすることができる。 4. 中間報告を行い、多角的な観点からの質疑応答ができる。 5. 質疑応答の結果を踏まえて、研究企画書を修正し、研究を展開することができる。 6. 研究結果を客観的に考察し評価できる。 7. 研究成果を取りまとめ論文にできる。 8. 研究成果をプレゼンテーションできる。
240	衛生化学分野	杉山 晶規 教授	実験動物モデル、培養細胞系、臨床検体を用いた、がんの原因や予防に関わる因子に関する研究 1. 分子腫瘍学に関連する最近のトピックから研究課題を設定できる。 2. 研究目的の達成のために適切な生化学的分析法や遺伝子工学的手法を利用した評価系を確立し、これら評価系を用いた研究を実践できる。 3. 実験結果を解析、考察し、まとめることができる。 4. 研究成果を学会発表し、討論できる。 5. 研究成果を学術誌へ論文投稿できる。 6. 研究成果をもとに博士論文を作成できる。 7. 発表会にて博士論文を発表できる。
240	薬物代謝動態学分野	幅野 渉 准教授	ゲノム・エピゲノム情報を活用した病態解析また は薬物治療に関する基礎的研究 1. 病態解析または薬物治療における課題を設定 し、これを解決するための研究計画を立案できる。 2. 研究の遂行に必要な情報を収集し、それらの重

	要性や信頼性を評価できる。
	3. 研究の遂行に必要な実験手法を修得し、再現性
	のある正確なデータを得ることができる。
	4. 解析されたデータを総合的かつ批判的に考察で
	きる。
	5. 研究成果を論文にまとめ、学会や学術誌に発表
	できる。
	6. 研究倫理に関する知識を習得し、適切な態度で
	研究を遂行できる。

研究活動を主体的に行い、研究成果の学会発表及び学術誌投稿を行うとともに博士論文の提出 (100%) をもって評価する。

特記事項 (事前学修等)

各授業に対する事前学修(予習・復習)は最低30分を要する。事前学修の内容については、担当者が毎回の授業にて行う指示に従うこと。

生命薬学特別研究 (創薬基盤薬学)

責任者:野中孝昌教授

担当講座·分野 : 構造生物薬学分野、創薬有機化学分野、情報薬科学分野

実習 240回

単 位 16 単位

期間

通年

学習方針

基本理念:

創薬に関わる新規の研究成果を得ることを目指し、個々の指導教員の専門に沿った研究と論文 作成を行う。

教育成果 (アウトカム):

定めた研究テーマを深く探求することによって、新規の研究成果を得られるようになる。

(ディプロマ・ポリシー:3,4)

到達目標 (SBOs):

- 1. 研究テーマを設定し、それに対する実験計画を立案できる。
- 2. 実験計画に基づき、研究を遂行できる。
- 3. 研究結果を客観的に評価できる。
- 4. 研究成果を取りまとめ発表できる。
- 5. 研究テーマに関連する文献検索と考察ができる。

実習日程

コマ数	講座・分野	担	当	者	内容
240	講座・分野構造生物薬学分野	<i>,</i>	当 孝昌		内 容 創薬上重要なタンパク質にターゲットを絞り、X 線結晶構造解析により立体構造を明らかにすることによって、リード化合物創出のための構造基盤 を得られるようになる。 1. 研究テーマを設定し、それに対する実験計画を 立案できる。 2. 実験計画に基づき、研究を遂行できる。 3. 研究結果を客観的に評価できる。 4. 研究成果を取りまとめ発表できる。
				5. 研究テーマに関連する文献検索と考察ができる。	

240	創薬有機化学分野	河野	富一 教授	合成有機低分子を基軸とした生体機能解明ツールの開発、および医薬のリード・シード化合物の創製を目的とした医薬品合成化学研究に取り組む。創薬に向けた実践的な医薬分子設計や最先端有機合成手法について学ぶとともに、可能な限り生物活性評価も行う。得られた研究結果や成果を学内外の研究会や学会での発表等を通じて、研究内容の質を高め、最終成果を学位論文としてまとめる。1. 現象を客観的に捉える観察眼をもち、論理的に思考できる。2. 自らが実施する研究に係る法規範を遵守して研究に取り組むことができる。3. 研究課題に関する国内外の研究成果を調査し、読解、評価できる。4. 課題達成のために解決すべき問題点を抽出し、研究計画を立案することができる。5. 研究計画に沿って、意欲的に研究を実施できる。6. 研究の各プロセスを適切に記録し、結果を考察することができる。7. 研究成果の効果的なプレゼンテーションを行い、適切な質疑応答ができる。8. 研究成果を学位論文としてまとめることができる。8. 研究成果を学位論文としてまとめることができる。
240	情報薬科学分野	西谷	直之 教授	化合物スクリーニングと作用機序解析 1. 研究テーマを設定し、それに対する実験計画を立案できる。 2. 化合物評価系を構築し、スクリーニングを遂行できる。 3. ヒット化合物の薬効評価と作用機序の解析ができる。 4. 研究成果をまとめ、学術論文や学会等で自身の研究を発表できる。

			研究背景の調査および課題の抽出、研究計画の策
			定、実施
			1. 研究テーマを設定し、それに対する実験計画を
			立案できる。
240	構造生物薬学分野	阪本 泰光 准教授	2. 実験計画に基づき、研究を遂行できる。
			研究結果の評価、発表及び考察
			1. 研究結果を客観的に評価できる。
			2. 研究成果を取りまとめ発表できる。
			3. 研究テーマに関連する文献検索と考察ができる。

研究テーマを遂行して新規の研究成果を得、学位論文公聴会で研究内容を発表するとともに、 学位論文を提出することをもって評価する (100 %)。

特記事項 (事前学修等)

授業に対する事前学修 (予習・復習)の時間はそれぞれ 30 分程度を要する。事前学修の内容は、毎回の授業にて担当者が行う指示に従うこと。研究遂行の過程で、それぞれの担当者が随時指導と助言を行う。

生命薬学特別研究(生命機能科学)

責任者: 大橋 綾子 教授

担当講座·分野 : 生体防御学分野、機能生化学分野、分析化学分野、臨床医化学分野

実 習 240回

単 位 16 単位

期間

通年

学習方針

基本理念:

各分野の博士論文指導教員の指導のもと、研究テーマを定め新規の研究成果を得る活動を通して、研究テーマを含めた専門性を深める。

教育成果 (アウトカム):

研究テーマを定め、実施し、新規の研究成果を得ることができる。

(ディプロマ・ポリシー:1,2,3,4)

到達目標 (SBOs):

- 1. 生命機能科学に関連する研究テーマを設定するための情報収集ができる。
- 2. 研究テーマを設定し、適切な実験計画を立案できる。
- 3. 実験計画に基づき、研究を遂行できる。
- 4. 研究結果を客観的に評価し、考察できる。
- 5. 研究成果を発表し、質疑応答できる。
- 6. 研究成果を学会発表や論文を通じて、社会に情報発信できる。

実習日程

コマ数	講座・分野	担	当	者	内容
240	生体防御学分野	大橋	綾子	教授	高次生命機能を支える分子基盤に関する研究と発表 1. 老化、生体防御、環境応答、薬物耐性などを題材として、これらに関わる遺伝子群の個体レベルの機能や疾病との関連を解明する実験計画を立案できる。 2. 実験計画に基づき、研究を遂行できる。 3. 研究結果を客観的に評価し、考察できる。 4. 必要に応じて、適切な追加実験を計画、実施できる。 5. 研究成果を学術論文や学会発表等を通じて、社

			会に発信できる。
			云に元にくさる。 6. 研究成果を博士学位論文としてまとめることが
			0. 柳光成末を停工子位冊文としてよとめることが できる。
			プロトンポンプ ATPase に関する研究と発表
	機能生化学分野		1.プロトンポンプ ATPase に関する最新の文献を
			横索し、状況を把握することができる。
			2. プロトンポンプ ATPase の病原微生物における
		中西 真弓 教授	役割、あるいは、ほ乳類の骨代謝・がん細胞の転
			移における役割の解析など重要度の高い研究テー
240			
			3. 実験を実施し、結果について客観的に評価・考
			察できる。
			4. 研究成果を取りまとめて学会などで発表し、質
			疑応答できる。
			5. 研究成果を学術論文として学外へ発信できる。
	生体防御学分野		細胞内異物処理や飢餓ストレス応答に関わる遺伝
			子群の機能を個体レベルで解析し、創薬につなが
			る標的分子の同定や病態モデル作出のための研究
			計画を立案し、研究を遂行する。
			1. 研究テーマを設定し、それに対する実験計画を
			立案できる。
			2. 実験計画に基づき、研究を遂行できる。
240		白石 博久 特任教授	3. 研究結果を客観的に評価し、取りまとめた上で
			説明できる。
			4. 実験結果と考察に基づき、適切な追加実験を実
			施できる。
			5. 研究テーマに関連する文献検索、読解、および
			考察ができる。
			6. 研究成果を論文や学会発表を通して社会に発信
			できる。
240	分析化学分野		哺乳動物細胞の細胞内輸送および遺伝子発現制御
			機構の解明
			[情報収集および研究テーマの決定]
			1. 研究テーマの対象となる細胞内輸送、遺伝子発
		藤本 康之 准教授	現制御、がん・生活習慣病等の分野について、学
			術論文や専門書等を参考にして背景的知識を収集
			することができる(情報収集)。
			2. 仮説の立案に基づき、試験研究(実験)によっ
			2. 灰地ツ土木に坐して、呼吸明九(大衆)により

			~ IA = - 746 A TURB - 4 = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
			て検証可能な研究テーマを設定することができる。
			[試験研究(実験)の実施]
	 -		3. 細胞に導入すべき遺伝子発現ベクターを設計
			し、遺伝子組換えによって作製することができる。
			4. 遺伝子導入産物の発現状況と発現による細胞機
			能への影響を観察・測定し、評価することができる。
			[研究結果の解析と考察]
			5. 実験結果を解析し、データの解釈や生物学的意
			義を考察することができる。
			6. 実験上の問題点を指摘し、原因の候補を列挙し、
			その上で改善策を立案することができる。
			7. 新たに見いだされた現象を医療応用に結びつけ
			て考察することができる。
			[研究成果の発表]
			8. 研究の成果を学位論文にまとめ、発表すること
			ができる。
			9. 研究成果を学術論文や学会発表をとおして発信
			することができる。
	臨床医化学分野		薬用資源植物の系統関係の解析
			1. 系統関係を解析するために、解析に適したDNA
			マーカーを選択し、対象とする植物および類縁種
			の塩基配列を解析するとともに、得られた塩基配
			列を用いて複数の方法で系統解析を行うことがで
			きる。
0.40			2. 対象とする生物群の形態的特徴を、探索・抽出
240		大橋 一晶 准教授	 し、系統解析から推測される類縁関係の観点から
			議論できる。
			3. 分布等の地理的・生態的情報を文献的に収集
			 し、系統関係から推測される進化との関連につい
			て議論できる。
			4. 解析により得られた系統関係について考察し、
			学術論文や学会発表等で発表することができる。
			1 117 may 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

研究テーマを遂行して新規の研究成果を得、学位論文公聴会で研究内容を発表するとともに、学位論文を提出することをもって評価する。成績評価については、博士論文の内容が100%となる。

特記事項 (事前学修等)

学部で学んだ知識については、再確認しておくと理解の助けになります。研究の内容については、その日のうちに整理しておくこと。

授業に対する事前学修 (予習・復習) の時間は最低 60 分を要する。事前学習の内容は毎回の 授業にて担当者が行う指示に従うこと。

研究成果の学会発表にあたっては事前に予行を行うともに、発表終了後フィードバックを行う。 また博士論文の提出にあたっては、内容を確認、添削した後、提出する。