基礎化学

責任者・コーディ	ネ-タ-	化学科 中島 理 教授			
担当講座·学科(分野)	化学科			
対象学年		1			
期間		後期	区分・時間数 (1コマ2時間換算)	講義	28 時間(14 コマ)
単位数		1 単位			

・ねらい

化学の知識あるいは化学的な物事の考え方は、2年次以降の薬学専門基礎科目を学ぶ上で基本となる必須なものである。従って、薬学を学ぶ上で必要な化学の基礎力を身に付けるために、物質(原子、分子、イオン)の基本概念・化学結合・結晶構造・熱化学・化学平衡・無機化合物などについて、より深く確実な知識を修得することにより、化学的な論理性を養うことができる。

·学修目標

- 1.原子の構成や分子の成り立ちについて説明できる。
- 2.原子や分子の電子配置を表現する法則や原理について説明できる。
- 3.混成軌道の概念を用いた分子構造について説明できる。
- 4.固体の代表的な結晶構造について説明できる。
- 5.化学変化に伴う熱の変換について説明できる。
- 6.各種化学平衡の状態を理解し、相律や状態図について説明できる。
- 7.基本的な化合物の構造、物性、反応性について説明できる。
- ・薬学教育モデル・コア・カリキュラム(令和 4 年度改訂版)対応項目

C-1-1 化学結合と化学物質・生体高分子間相互作用、C-1-4 反応速度

·学修事項

- 1.原子の構造
- 2.元素の周期的性質
- 3.化学結合
- 4.固体と結晶構造
- 5.熱化学
- 6.相平衡と状態図
- 7.化学平衡
- 8.電解質水溶液
- 9.酸と塩基
- 10.反応速度

・この科目を学ぶために関連の強い科目

ベーシック化学、アドバンスト化学、基礎物理学、はじめて学ぶ大学の有機化学

・この科目を学んだ後につなげる科目

物理化学1・2・3、分析化学1・2、創剤学1・2

・講義日程

(矢) 西 105 1-E 講義室

月日	曜日	時 限	講座・分野	担当教員	講義内容/到達目標
9/2	火	1	化学科	中島 理 教授	原子の構造[I]: 物質の構成粒子・質量保存の法則 1.量子化学が確立するまでの歴史的背景を説明できる。 2.物質の基本粒子が原子であることを説明できる。 事前学修(予習):指定教科書1~11ページを読み、原子についてまとめておく。 事後学修(復習):古典物理学で説明できない現象を挙げ、その内容を説明できるようにしておく。
9/9	火	1	化学科	中島 理 教授	原子の構造[II]: 原子モデル・電子配置 1.ボーアの水素原子模型からエネルギーの 量子化を説明できる。 2.原子の電子配置を表現する法則や原理を 説明できる。 事前学修(予習):指定教科書 12~19 ページを読み、電子軌道についてまとめておく。 事後学修(復習):電子軌道の種類を挙げ、 その形を説明できるようにしておく。
9/16	火	1	化学科	中島 理 教授	元素の周期的性質[I]: 周期表・イオン化エネルギー・電子親和力 1.原子の電子配置から周期律と周期表を説明できる。 2.周期律をもとに元素を分類し、その性質を説明できる。 事前学修(予習):指定教科書 22~30 ページを読み、元素の周期的性質についてまとめておく。 事後学修(復習):第4周期元素で電子が満たされる軌道をすべて挙げ、その軌道に電

					フがドの持に洪ナナヤインファンナギロー
					子がどの様に満たされているのかを説明できるようにしておく。
9/22	月	1	化学科	中島 理 教授	元素の周期的性質[II]:電子の軌道配置・酸化数 1.電子が存在する確率分布と分子の形との関係を説明できる。 2.電子密度から酸化と還元の概念が説明できる。 【双方向授業】この講義ではクリッカーを利用したグループワークを取り入れ酸化数の理解を深める。 事前学修(予習):指定教科書 31~37 ページを読み、酸化数の決定方法についてまとめておく。 事後学修(復習):指定教科書 37~39 ページの演習問題を解けるようにしておく。
9/30	火	1	化学科	中島 理 教授	化学結合[I]: 電気陰性度・各種化学結合の種類と特徴 1.原子やイオンの結合様式を理解し、化学 結合の原理を説明できる。 2.電気陰性度の概念から極性分子を説明で きる。 事前学修(予習):指定教科書 40~44 ペー ジを読み、化学結合の種類についてまとめ ておく。 事後学修(復習):電子軌道の概念を用い て、共有結合の結合様式を説明できるよう にしておく。
10/21	火	1	化学科	中島 理 教授	化学結合[Ⅱ]: 分子軌道法・混成軌道 1.混成軌道の概念から、代表的な分子構造を説明できる。 2.原子軌道から分子軌道が成立することを、エネルギー準位の概念から説明できる。事前学修(予習):指定教科書 44~66 ページを読み、分子軌道法の概念についてまとめておく。事後学修(復習): He 分子が単原子分子で存在することを、分子軌道法を用いて説明できるようにしておく。
10/28	火	1	化学科	中島 理 教授	固体と結晶構造: 1.固体結晶の結合状態を理解し、各種結晶の性質と特徴を説明できる。 2.結晶構造の分類や基礎的な概念を説明できる。 事前学修(予習):指定教科書85~97ページを読み、結晶の種類についてまとめてお

					く。 事後学修(復習):水は氷になると体積が増加する理由を水素結合の概念を用いて説明できるようにしておく。
11/4	火	1	化学科	中島 理 教授	熱化学: 1.熱化学方程式を作り、種々の反応熱を説明できる。 2.反応熱と反応経路の関係を説明できる。事前学修(予習):指定教科書139~146ページを読み、発熱・吸熱反応の概念についてまとめておく。 事後学修(復習):指定教科書146~147ページの演習問題を解けるようにしておく。
11/11	火	2	化学科	中島 理 教授	相平衡と状態図: 1.Gibbs の相律を理解し、多成分系の相平衡を説明できる。 2.自由度と状態変数の関係を説明できる。事前学修(予習):指定教科書148~155ページを読み、ギブスの相律の式についてまとめておく。事後学修(復習):三元系状態図における等温断面図の組成比を読み取ることができるようにしておく。
11/18	火	2	化学科	中島 理 教授	化学平衡: 1.化学平衡とはどのような状態であるかを説明できる。 2.濃度、圧力、温度が化学平衡に及ぼす影響について説明できる。 事前学修(予習):指定教科書167~175ページを読み、化学平衡の概念についてまとめておく。 事後学修(復習):指定教科書175~178ページの演習問題を解けるようにしておく。
11/25	火	3	化学科	中島 理 教授	電解質水溶液[I]: 1.電解質水溶液の化学平衡から電離定数を導き出すことができる。 2.解離指数の概念を説明できる。 事前学修(予習):指定教科書 178~194 ページを読み、電離平衡の定義についてまとめておく。 事後学修(復習):指定教科書 175~178 ページの演習問題を解けるようにしておく。
12/2	火	2	化学科	中島 理 教授	電解質水溶液[II]: 1.弱酸、弱塩基の解離平衡から解離指数を 導き出すことができる。 2.加水分解の概念および緩衝溶液の性質と

					特徴を説明することができる。 事前学修(予習):指定教科書 194~198 ページを読み、解離平衡の概念についてまとめておく。 事後学修(復習):弱酸・弱塩基の解離指数を用いて、水素イオン指数を求める式が導き出せるようにしておく。
12/8	月	2	化学科	中島 理 教授	酸と塩基: 1.中和反応の原理と化学当量の概念を説明できる。 反応速度[I]: 1.化学反応の進み方と活性化エネルギーの関係を説明できる。 事前学修(予習):指定教科書198~200ページを読み、中和滴定の結果から未知濃度を算出する方法をまとめておく。 事後学修(復習):溶液の濃度を規定度で求められるようにしておく。
12/16	火	1	化学科	中島 理 教授	反応速度[Ⅱ]: 1.反応速度の定義、速度式、反応次数および速度定数について説明できる。無機化合物: 1.周期表から元素の分類方法を説明できる。有機化合物: 1.有機化合物の体系を示し、その性質や反応を説明できる。事前学修(予習):指定教科書222~239ページを読み、化学反応の種類についてまとめておく。事後学修(復習):触媒が活性化エネルギーに与える影響を説明できるようにしておく。

・ディプロマポリシーとこの科目関連

7 1 2 1 1 1 7 2 G = 3 1 1 H M/C	
1. 薬剤師として医療に携わる職業であることを理解し、高い倫理観と豊かな人間性、及び社	^
会の変化に柔軟に対応できる能力を有しているもの。	
2. 地域における人々の健康に関心をもち、多様な価値観に配慮し、献身的な態度で適切な医	\triangle
療の提供と健康維持・増進のサポートに寄与できるもの。	
3. チーム医療に積極的に参画し、他職種の相互の尊重と理解のもとに総合的な視点をもって	
ファーマシューティカルケアを実践する能力を有するもの。	
4. 国際的な視野を備え、医療分野の情報・科学技術を活用し、薬学・医療の進歩に資する総	0
合的な素養と能力を有するもの。	9

・評価事項とその方法

総括的評価:定期試験(短答式・選択式・論述式による総合的記述試験)の結果および受講態度(講義への出席状況および取り組み姿勢)により総合的に評価し、60%以上を合格とする。

形成的評価:講義中に行う演習問題への取り組み状況から理解度を確認する。

学修事項	DP	中間試験	レポート	小テスト	定期試験	発表	その他	合計
1~10	1~4				80		20	100
合計	+				80		20	100

·教科書·参考書等(教:教科書 参:参考書 推:推薦図書)

	書籍名	著者名	発行所	発行年
教	物理化学の基礎	柴田茂雄	共立出版	1999
推	岩波理化学辞典 第 5 版	長倉三郎 他編	岩波書店	1998

・特記事項・その他

- ・化学とは物質の仕組みを探ることであり、化学の基礎知識を身に付けることは医療従事者にとって必要不可欠である。本講義を受講するにあたっては、シラバスに記載されている講義内容を確認し、教科書等を用いて事前学修(予習)および事後学修(復習)を行う必要がある。なお、各講義に対する事前学修の時間は最低 20 分、事後学修の時間は最低 60 分を要する。
- 1.予習のポイント:講義は指定教科書を基に進めるため、教科書の内容を予習すること。なお、予習すべき具体的な内容はシラバスの各回講義欄「講義内容/到達目標」に記載してある。
- 2.復習のポイント:講義で解説した内容を中心に復習すること。なお、復習すべき具体的な内容はシラバスの各回講義欄「講義内容/到達目標」に記載してある。
- ・講義進度の都合上、事前学修の具体的な内容が変更となる場合には、WebClass を通じて連絡する。 ・9月22日の講義ではクリッカーを利用したグループワークを取り入れ、学生同士で教授し合う力
- ・9月22日の講義ではグリッカーを利用したグループリーグを取り入れ、学生向士で教授し合ったおよびコミュニケーション能力の強化を図る。
- ・単位認定後、希望者には試験結果を開示するので、担当教員に連絡をとること。

当該科目に関連する実務経験の有無 無

・授業に使用する機器・器具と使用目的

使用区分	機器・器具の名称	台数	使用目的
講義	デスクトップパソコン ProDesk600 G5 SF/CT	1	講義資料作成、他
講義	ノートパソコン LAVIE Direct NM	1	講義資料作成、他
講義	ノートパソコン 250 G7/CT	1	講義資料作成、他
講義	複合機 image RUNNER ADVANCE 一式	1	講義資料作成、他