薬物送達学

責任者・コーディネ	-タ- 医療	医療薬科学講座創剤学分野 杉山 育美 准教授				
担当講座·学科(分	}野) 医療	医療薬科学講座創剤学分野 、内科学講座血液腫瘍内科分野				
対象学年		3				
期間	後期		区分・時間数 (1コマ2時間換算)	講義	22 時間(11 コマ)	
単位数		1 単位				

· 学修方針(講義概要等)

薬物送達学では、創剤学 1、創剤学 2 で学んだ基礎理論、製剤総則より各製剤の特性を理解した上で、種々の Drug Delivery System (DDS、薬物送達システム)についての各論を最新の知見を交えて学ぶ。さらに、医薬品製剤の開発研究および品質管理について時代背景を鑑みながら関連づけて学ぶ。

・教育成果(アウトカム)

DDS の詳細として、放出制御型製剤、標的指向型製剤、吸収促進技術、プロドラッグを中心に学ぶとともに、医薬品開発と生産のながれ、今後臨床適用されるキャリア、医薬品市場と開発すべき医薬品、規範、品質管理に関し概説することで、医薬品とする際の製剤ではなく、機能性を付与する創剤の総合的な習得に到達することが可能になる。 (ディプロマ・ポリシー: 2,3)

·到達目標(SBO)

- 1. 薬物の安定性を高める代表的な製剤的手法を列挙し、説明できる(862)。
- 2. 皮膚に適用する製剤の種類とその特性について説明できる(867)。
- 3. 代表的な DDS 技術を列挙し、説明できる(875)。
- 4. プロドラッグと活性代謝物について、例を挙げて説明できる(832)。
- 5. コントロールドリリースの概要と意義について説明できる(876)。
- 6. 投与部位ごとに、代表的なコントロールドリリース技術を列挙し、その特性について説明できる (877)。
- 7. コントロールドリリース技術を適用した代表的な医薬品を列挙できる(878)。
- 8. ターゲティングの概要と意義について説明できる(879)。
- 9. 投与部位ごとに、代表的なターゲティング技術を列挙し、その特性について説明できる(880)。
- 10. ターゲティング技術を適用した代表的な医薬品を列挙できる(881)。
- 11. 吸収改善の概要と意義について説明できる(882)。
- 12. 投与部位ごとに、代表的な吸収改善技術を列挙し、その特性について関連づけることができる (883)。
- 13. 吸収改善技術を適用した代表的な医薬品を列挙できる(884)。
- 14. 後発医薬品とその役割について説明できる(104)。
- 15. 医薬品(後発医薬品等を含む)の研究・開発過程で行われる試験(非臨床試験、臨床試験、安定性試験等)と得られる医薬品情報について関連づけることができる(760)。
- 16. 医薬品の市販後に行われる調査・試験と得られる医薬品情報について概説できる(761)。
- 17. 医薬品情報に関係する代表的な法律・制度(薬事法、GCP、GVP、GPSP、GMP など)とレギュラトリーサイエンスについて具体的に述べることができる(762)。

·講義日程

月日	曜日	時限	講座・分野	担当教員	講義内容/到達目標	
9/11	木	4	創 剤 学 分 野	杉山 育美 准教授	創剤学1、2の復習、小テスト 1. 創剤学1において学んだ物理薬剤学分野の項目が創剤学2で学んだ剤形等に密接に結びついていることを説明できる。 2. 代表的なDDS技術を列挙し、説明できる。 【ICT (slido) (moodle)】 事前学修:創剤学1及び2を復習する。事後学修:講義中で示した重要なポイントを再復習する。小テストの正解を作成する。	
10/2	木	4	創 剤 学 分 野	杉山 育美 准教授	経皮投与製剤の特徴と利点、生体膜透過促進法、小テスト 1. 皮膚に適用する製剤の種類とその特性について説明できる。 2. 吸収改善の概要と意義について説明できる。 3. 経皮吸収型製剤に適用できる医薬品の条件を説明できる。 4. 皮膚の構造を説明できる。 5. 経皮吸収型製剤を列挙できる。 6. 代表的な経型製剤に適した疾患について考えることができる。 【ICT (slido) (moodle)】 事前学修:外テストの正解を作成する。	
10/3	金	4	創 剤 学 分 野	杉山 育美 准教授	代表的なプロドラッグ、小テスト 1. プロドラッグと活性代謝物について、例を挙げて説明できる。 2. 薬物の安定性を高める代表的な製剤的手法を列挙し、説明できる。 3. プロドラッグの定義を述べることができる。 4. プロドラッグ化する目的を説明できる。 5. 代表的なプロドラッグを列挙できる。【ICT (slido) (moodle)】事前学修:教科書 p340~347 を読む。事後学修:小テストの正解を作成する。	
10/16	木	4	創剤学分野	杉山 育美 准教授	放出制御型製剤、小テスト 1. コントロールドリリースの概要と意 義について説明できる。	

					2. 投与部位ごとに、代表的なコントロールドリリース技術を列挙し、その特性について説明できる。 3. 放出制御型製剤に適する医薬品の特徴を述べることができる。 4. 放出制御型製剤の種類を列挙できる。【ICT (slido) (moodle)】 事前学修:教科書 p303~312 を読む。事後学修:小テストの正解を作成する。
10/23	木	4	創 剤 学 分 野	杉山 育美 准教授	代表的な徐放性製剤、腸溶性製剤、徐放性製剤の製剤材料の種類と性質、小テスト 1. コントロールドリリース技術を適用した代表的などに、代表的な吸収できる。 2. 投与部位ごとに、代表的な吸収できる。 3. 吸収改善技術を適用した代表的な医薬品を列挙できる。 4. 徐放性製剤のメカニズムを述べることができる。 5. 腸溶性製剤のメカニズムを述べることができる。 5. 腸溶性製剤のメカニズムを連びるの特徴を説明できる。 (ICT (slido) (moodle)) 事前学修:教科書 p312~331 を読む。事後学修:小テストの正解を作成する。
10/30	木	4	創 剤 学 分 野	杉山 育美 准教授	代表的なドラッグキャリア、前半のまとめ、小テスト 1. ターゲティングの概要と意義について説明できる。 2. 投与部位ごとに、代表的なターゲティング技術を列挙し、その特性について説明できる。 3. ドラッグキャリアとは何かを説明できる。 4. 代表的なドラッグキャリアを列挙できる。 5. 臨床適用されているドラッグキャリアの種類、基剤、適用を説明できる。 【ICT (slido) (moodle)】 事前学修:教科書 p332~340 を読む。 事後学修:小テストの正解を作成する。
11/13	木	1	創 剤 学 分 野	杉山 育美 准教授	代表的なドラッグキャリアのメカニズム、中間テスト 1. ターゲティング技術を適用した代表的な医薬品を列挙できる。

					2. 放出制御、徐放化を目的としたドラッグキャリアのメカニズムを説明できる。 3. 標的化を目的としたドラッグキャリアのメカニズムを説明できる。 【ICT (slido)】 事前学修:教科書 p332~340 を読む。 事後学修:代表的な DDS 製剤について 列挙し、そのメカニズムを整理する。
11/20	木	4	創 剤 学 分 野	杉山 育美 准教授	医薬品市場と開発すべき医薬品、小テスト 1. 医薬品(後発医薬品等を含む)の開発過程で行われる試験(非臨床試験、臨床試験、安定性試験等)と得られる医薬品情報について概説できる。 2. ジェネリック医薬品について説明できる。 3. オーファンドラッグに関し述べることができる。 【ICT (slido) (moodle)】 事前学修:教科書 p283~287, 295~302 を読む。 事後学修:小テストの正解を作成する。
11/27	木	4	創 剤 学 分 野	杉山 育美 准教授	医薬品の製造と品質管理、規範、小テスト 1. 医薬品の市販後に行われる調査・試験と得られる医薬品情報について概説できる。 2. 医薬品情報に関係する代表的な法制度(薬機法、GLP、GCP、GVP、GMP、GPSP等)について関連づけて説明することができる。 3. 医薬品製造における品質管理に関し説明できる。 4. 医薬品開発から製造、臨床使用に至る一連の流れを述べることができる。 【ICT (slido) (moodle)】 事前学修:教科書 p286~295 を読む。事後学修:小テストの正解を作成する。
12/4	木	4	内科学講座 血液腫瘍内科分野	伊藤 薫樹 教授	医療現場における DDS、小テスト 1. ターゲティング技術を適用した代表的な医薬品を列挙できる。 2. 医療現場において、DDS がどのように活用されているのかを実際の治療を例に説明できる。

_						
						3. 院内製剤の重要性とその意義を述べることができる。 4. 臨床で使用されている医薬品の改善点を創剤学的見地より考えることができる。 【双方向授業:コメントペーパー】事前学修:DDS 関連の剤形を復習する。事後学修:臨床で使用されている医薬品の改善点を創剤学的見地より考えたことをレポートにまとめる。小テストの正解を作成する。
	12/8	月	1	創 剤 学 分 野	杉山 育美 准教授	薬物送達学の総復習 1. 代表的な DDS 技術を列挙し、関連づけることができる。 2. コントロールドリリースの概要と意義について説明できる。 3. ターゲティングの概要と意義について説明できる。 4. 研究段階にある DDS 製剤の例を説明できる。 5. 医療現場での問題点からそれを解決するための剤形を提案できる。事後学修:薬物送達学を復習する。事後学修:講義中で学んだポイントを再復習し、各項目を関連付ける。

· 教科書·参考書等(教: 教科書 参: 参考書 推: 推薦図書)

	書籍名	著者名	発行所	発行年
教	基礎から学ぶ 製剤化のサイ エンス 第 4 版	山本 恵司 監修	エルゼビアジャパン	2021
参	第 18 改正日本薬局方解説書	日本薬局方解説書編集員会編	廣川書店	2021
参	製剤学 改訂第7版	山本 昌 他編	南江堂	2017
参	スタンダード薬学シリーズⅡ -6 「医療薬学Ⅶ 製剤化の サイエンス」	日本薬学会編	東京化学同人	2021
参	スタンダード薬学シリーズⅡ -6「医療薬学V 薬物治療 に役立つ情報」	日本薬学会編	東京化学同人	2017

·成績評価方法

講義のはじめに行う小テストおよび第10回講義のレポート(論述式20%)、第7回講義に行う中間テスト(論述式20%)及び定期試験(論述式60%)を総合的に評価する。

・特記事項・その他

- 1) 事前学修は、創剤学 1、創剤学 2の内容を理解しておくとともに各回の到達目標の内容に関し教科書の該当ページを調べるものとし、各回最低 30分を要する。事後学修は、小テストの正解を作成するとともに講義中に明示された重要なポイントを中心にした論理的な復習やレポート作成に最低 50分の時間を要する。更に、中間試験前には 5時間程度、定期試験前には 7時間程度の総復習の時間を確保する必要がある。
- 2) 講義のはじめに前回の講義内容に関する小テストを実施する。フィードバックとして moodle にて 模範解答とコメントを開示する。
 - 中間テストは採点後に返却し、正解率の低い問題を重点的に解説する。
 - 各回の講義の最後に slido.com を利用し、疑問点や理解度、要望等を記載することができる。質問については次回の講義時に全体に解説する。
 - 定期試験後にフィードバックとして補講等を実施する。
- 3) 当該科目に関連する実務経験の有無 有本学附属病院等における医師の実務経験を有する教員が、専門領域に関する実践的な教育を、事例を交えて行う。