スタンダード生物

責任者・コーディネーター		教養教育センター生物学科 三枝 聖 准教授				
担当講座・学科(分野) 教養教育センター生物学			科			
対象学年	1					
期間	前期		区分・時間数 (1コマ2時間換算)	講義	28 時間(14 コマ)	
単位数		1 単位				

・ねらい

現在、医療従事者にとって生物学の知識は必須となっている。高等学校で履修する生物科目(「生物基礎」および「生物」)では広汎な分野を扱っているものの、習得した知識は各学部専門科目の講義を理解するうえで、必ずしも充分とは言い難い。スタンダード生物は、各学部専門課程の生物系科目を履修する前に、基礎生物学的知識および考え方を確認・充実した方がよいと判断された学生を対象とする全学部共通科目である。履修者は基礎学力調査テスト(生物)の結果をふまえ決定する。本科目は、各学部専門科目との関連や連続性に配慮しつつ、本学各学部に共通して必要と思われる項目を中心に学修する。これにより、医療系大学の学生に必要と思われる生物学・生命科学の基礎的内容を補充し、専門科目(薬学生物 1~3)の導入部に相当する基礎知識を習得する。講義は一方的な知識の教授を極力避け、受講学生との対話による双方向のコミュニケーションを重視することにより、受講生の論理的思考力を涵養し能動的学修(アクティブラーニング)を促す。

・学修目標

- (1) 生命を定義し、生物の特徴を挙げることができる
- (2) ウイルス・原核細胞・真核細胞の共通点・相違点を理解できる
- (3) 細胞小器官を挙げ、それぞれの機能を概説できる
- (4) 細胞周期各期の事象を理解し、細胞分裂の過程を説明できる
- (5) 生体を構成する物質を挙げ、それぞれの物質の分布・機能を理解できる
- (6) 減数分裂の過程を概説し、有性生殖における減数分裂の意義を説明できる
- (7) 受精に始まる初期発生の過程を概説し、分化・誘導などの現象を理解できる
- (8) 体内における物質代謝について例を挙げ、生合成・分解経路を説明できる
- (9) Mendel の遺伝の法則を確認し、伴性遺伝、母性遺伝を説明できる
- (10) ヒトの遺伝子について概説し、セントラルドグマの各過程を説明できる
- (11) 遺伝子発現調節について概説できる
- (12) 遺伝子工学の基礎的方法・原理を説明できる
- (13) 恒常性の維持について具体例を挙げ、説明できる
- (14) 非特異的生体防御と特異的生体防御機構を分類し、概説できる
- ・薬学教育モデル・コア・カリキュラム(令和 4 年度改訂版)対応項目

C-6-1 生命の最小単位としての細胞、C-6-2 生命情報を担う遺伝子、C-6-5 生体エネルギーと代謝、C-6-7 細胞周期と細胞死、C-7-7 筋系、C-7-9 リンパ系と免疫、C-7-13 体液

·学修事項

- (1)「生命」の定義、生物の特徴
- (2) ウイルス・原核細胞・真核細胞の共通点・相違点
- (3) 細胞小器官とその機能
- (4) 細胞周期各期の事象と細胞分裂の過程
- (5) 生体を構成する物質とそれぞれの物質の分布・機能
- (6) 減数分裂の過程と有性生殖における減数分裂の意義
- (7) 受精に始まる初期発生の過程および分化・誘導などの発生学的現象
- (8) 体内における物質代謝および生合成・分解経路
- (9) Mendel の遺伝の法則、伴性遺伝、母性遺伝
- (10) ヒトの遺伝子およびセントラルドグマの各過程
- (11) 遺伝子発現調節
- (12) 遺伝子工学の基礎的方法・原理
- (13) 恒常性の維持
- (14) 生体の非特異的生体防御と特異的生体防御機構
- ・この科目を学んだ後につなげる科目

薬学生物

·講義日程

月日	曜日	時限	講座・分野	担当教員	講義内容/到達目標
4/16	水	2	生物学科	三枝 聖 准教授	生命とは 1.生物の特徴を列挙することにより、 生物を定義し、ウイルスは生物か否か 検討し、考察できる。 【ICT(WebClass)】 事前・事後学修:ZERO からの生命科 学 Chapter1
4/23	水	2	生物学科	三枝 聖 准教授	細胞の構造と機能 生命の単位としての細胞の特徴を確認 し、原核細胞と真核細胞、および動物 細胞と植物細胞の共通性と相違性を 解し、真核細胞のオルガネラの構造と 機能を理解する。さらに、オルガネ学 間の機能的連関をいくつかの例を挙げ て解え、原核細胞・真核細胞の共 通点・相違点を理解できる。 2.細胞小器官を挙げ、それぞれの機能 を概説できる。 【ICT(WebClass)】 事前・事後学修:ZERO からの生命科 学 Chapter 2
5/7	水	2	生物学科	三枝 聖 准教授	細胞周期とその調節 1.チェックポイントにおける細胞周期

					の監視、サイクリンや CdK による調節を学修することにより、細胞周期各期の事象を理解できる。 【ICT (WebClass)】 事前・事後学修: ZERO からの生命科学 Chapter2
5/14	水	2	生物学科	松政 正俊 教授	生体を構成する物質 1.細胞(生物)を構成している物質について有機物を中心に学修することにより、生体構成物質の共通点・相違点を整理できる。 【ICT(WebClass)】 事前・事後学修:ZERO からの生命科学 Chapter4
5/21	水	2	生物学科	三枝 聖 准教授	組織・器官・器官系 1.多細胞動物の細胞から個体へ至る体制を列挙し、それぞれの組織の特徴、器官・器官系の機能を概説することにより、器官の連携と調和を説明できる。 【ICT(WebClass)】 事前・事後学修:ZERO からの生命科学 Chapter3
5/28	水	2	生物学科	三枝 聖 准教授	減数分裂によるゲノムの分配 減数分裂の過程を染色体の挙動に焦点 を当てて概観し、遺伝的多様性が生じ るしくみを解説する。 1.ヒトの配偶子形成過程を概説できる。 【ICT(WebClass)】 事前・事後学修:ZERO からの生命科 学 Chapter3
6/4	水	1	生物学科	三枝 聖 准教授	受精と初期発生 1.受精に始まる初期発生の過程を両生類を例に概説することにより、各杯期の事象と分化・誘導を関連付けて整理できる。 【ICT(WebClass)】 事前・事後学修:ZERO からの生命科学 Chapter3
6/4	水	2	生物学科	三枝 聖 准教授	体内における物質代謝 同化と異化を定義し、生体内における 炭素、窒素、エネルギーの循環と流れ を解説する。 1. 体内における物質代謝について例を 挙げ、生合成・分解経路を説明でき る。 【ICT(WebClass)】 事前・事後学修:ZERO からの生命科 学 Chapter5

6/11	水	2	生物学科	三枝聖	准教授	遺伝 1.Mendel の遺伝の法則を確認し、伴性遺伝、母性遺伝などの遺伝様式を具体例を挙げて学修することにより、遺伝の基本と非メンデル遺伝について概説できる。 【ICT(WebClass)】 事前・事後学修: ZERO からの生命科学 Chapter6
6/18	水	2	生物学科	三枝聖	准教授	遺伝子の本体と複製 1.DNA 複製に関わる酵素とそのはたらきを学修することにより、複製がどのようになされるか説明できる。 2.ラギング鎖の不連続複製やテロメアDNA の複製について学修することにより、半保存的複製がどのようになされるか説明できる【ICT(WebClass)】事前・事後学修:ZERO からの生命科学 Chapter6
6/25	水	2	生物学科	三枝 聖	准教授	遺伝子発現の調節 1.遺伝子発現について概説することにより、遺伝子発現調節機構として転写調節、遺伝子量補償としてエピジェネティクスについて説明できる。【ICT(WebClass)】事前・事後学修:ZEROからの生命科学 Chapter6
7/2	水	2	生物学科	三枝聖	准教授	遺伝子工学 遺伝子操作の基本となる①切断(制限 酵素)、②分離(電気泳動)、③増幅 (クローニング、PCR)、④解読(塩 基配列決定)の技術を紹介し、その応 用例を概説する。 【ICT(WebClass)】 事前・事後学修:ZERO からの生命科 学 Chapter6
7/9	水	2	生物学科	三枝 聖	准教授	ホメオスタシス 神経系および内分泌系による恒常性の 維持のしくみを、様々な例を挙げて解 説する。 1. 恒常性の維持について具体例を挙 げ、説明できる。 【ICT(WebClass)】 事前・事後学修:ZERO からの生命科 学 Chapter7
7/16	水	2	生物学科	三枝 聖	准教授	生体防御 1.非特異的生体防御について列挙する

		ことで、非特異的生体防御のしくみを概説できる。 2.免疫担当細胞の種類を学修することで、それぞれの特徴や機能を理解できる。 3.リンパ球の分化と MHC について学修することにより、細胞性免疫と細胞性免疫の過程を概説できる。 【ICT(WebClass)】 事前・事後学修:ZERO からの生命科
		学 Chapter8

・ディプロマポリシーとこの科目関連

, 1	
1. 薬剤師として医療に携わる職業であることを理解し、高い倫理観と豊かな人間性、及び社	
会の変化に柔軟に対応できる能力を有しているもの。	
2. 地域における人々の健康に関心をもち、多様な価値観に配慮し、献身的な態度で適切な医	
療の提供と健康維持・増進のサポートに寄与できるもの。	
3. チーム医療に積極的に参画し、他職種の相互の尊重と理解のもとに総合的な視点をもって	
ファーマシューティカルケアを実践する能力を有するもの。	
4. 国際的な視野を備え、医療分野の情報・科学技術を活用し、薬学・医療の進歩に資する総	^
合的な素養と能力を有するもの。	

・評価事項とその方法

定期試験(多肢選択式や用語および用語の解説などを解答する総合的記述試験)80%、学修態度(予習・復習・講義の理解度に関するルーブリック*を用いた受講者の自己評価)20%の配分とし、総点を100点として総合的に評価する。

*自己評価用ルーブリックは第1回講義時に WebClass に提示・受講者に配布し、最終回講義終了時に 提出する。

学修事項	DP	中間試験	レポート	小テスト	定期試験	発表	その他	合計
1~14	4				80		20	100
合計					80		20	100

·教科書·参考書等(教:教科書 参:参考書 推:推薦図書)

	書籍名	著者名	発行所	発行年
教	ZERO からの生命科学改訂 4版	木下 勉 他	南山堂	2015
参	Essential 細胞生物学 原書 第 5 版	Alberts 他	南江堂	2021
参	レーヴン・ジョンソン生物 学原書第 7 版 [上]	Raven 他	培風館	2006
参	レーヴン・ジョンソン生物 学原書第 7 版 [下]	Raven 他	培風館	2007

・特記事項・その他

・事前学修内容及び事前学修時間

各回講義に該当する教科書(ZERO からの生命科学)の Chapte 冒頭の Summary や Keywords を参考に 用語が示している構造・細胞等の存在する場所・機能等を整理する(30 分)。

・事後学修内容及び事後学修時間

講義の内容を参考に、事前学習の内容に加筆・訂正しまとめる(45分)。

・授業における試験やレポート等の課題に対するフィードバック

各回講義時に出席確認を兼ね WebClass に講義内容に関連した各学部国家試験、CBT 等の問題を数題挙げる。これを復習に利用することで、受講学生の能動的学修(アクティブラーニング)を促す。

· ICT の活用

各回講義前に講義資料を、講義終了後に講義記録を可及的速やかに WebClass にアップロードすることで、履修学生の能動的学修(予習・復習)を補助する。

・成績開示の方法

成績確定後希望者には試験結果を開示する。

当該科目に関連する実務経験の有無 無

・授業に使用する機器・器具と使用目的

使用区分	機器・器具の名称	台数	使用目的
講義	ビジュアルプレゼンター(XGA)	1	講義資料供覧
講義	書画カメラ・DVD プレーヤーセット	1	講義資料供覧
講義	複合機一式(Canon·IR-ADVC3320F)	1	講義・実習資料印刷