歯科放射線学 担当講座(分野):口腔顎顔面再建学講座(歯科放射線学分野)

第3学年前期 講義 演習

前期 23.0 時間 1.0 時間

一般目標 (講義、演習)

電離放射線および非電離放射線を有効かつ安全に利用し、口腔領域の放射線学的な診断と治療をおこなうために、放射線物理学・放射線生物学・放射線腫瘍学に関する知識・技能および態度を習得する。

講義日程

一件找口性		T	T
月日	担当者	ユニット名 一般目標	到達目標
4月16日(火)	小豆島正典教授	1. 放射線とその性質	1. 原子の構造および電離と励起について説明する。
1、2 限		放射線の基礎的な知識を得る ため、電離と励起、放射線の 種類と分類について理解す る。	2. 放射線の種類を類別する。 3. X 線の一般的性質について説明する。
		2. 放射線に関係する単位 放射線の基礎的な知識を得る ため、放射線の量とそれを表 す単位について理解する。	1. 以下の用語を定義する。 照射線量、吸収線量、等価線量、実効線 量、放射線加重係数、組織加重係数 2. 放射線量を測定するための機器を列挙し、 測定原理を述べる。
4月23日(火)	小豆島正典教授	3. X線の発生原理とX線管の 構造 X線検査を適切に行うため、X 線の発生原理および X線管の 構造について習得する。	 X線発生の原理とX線管球の構造を説明する。 焦点と半影との関係を述べる。 X線のろ過について説明する。 制動放射線と特性X線を比較する。 X線スペクトルを図示し説明する。
		4. X 線発生装置と線質 X 線検査を適切に行うため、X 線発生装置および X 線の線質について習得する。	 X線発生装置の略図を書き、以下の役割を述べる。 絞り、指示コーン、タイマー 次の用語を定義する。 X線線ろ過、X線線スペクトル、半価層、照射野 X線の線質を表す用語を列挙する。 X線の線質と波長とを関係づける。
5月14日(火)1、2限	小豆島正典教授	5. X線と物質との相互作用 適切な X線写真像を得るため、X線と物質との相互作用 および X線の減弱について習 得する。	 光電効果とコンプトン効果について説明する。 コンプトン効果と散乱線の関係を説明する。 距離による X 線線の減弱、および物質による X 線線の減弱について述べる。
		6. 被写体コントラスト 適切な X 線写真像を得るため、被写体コントラストの形成原理について習得する。	 被写体コントラストを定義する。 被写体コントラストに影響する因子を列記する。

月日	担当者	ユニット名	到達目標
		一般目標 7. 写真コントラスト 適切な X 線写真像を得るため、黒化度を定義し写真コントラストの概念を習得する。	 黒化度を定義する。 X線線写真の特性曲線を作成する。 写真コントラストを定義する。 写真コントラストに対する散乱線の影響を説明する。 散乱線に影響する因子を列挙する。
5月21日(火) 1、2限	小豆島正典教授	8. X線の投影像 口腔内の適切な診断を行うため、X線の投影とX線像との関係について習得する。	 焦点-被写体-フイルムとの幾何学的関係を 説明する。 次の用語を定義する。 拡大・ひずみ・半影・接線効果・マッハ効果・ 歯頸部バーンアウト 像の鮮鋭度に影響する因子を列挙する。
		9. X線写真処理良好な X 線画像を得るため、フイルムの感光理論および写真処理過程について習得する。	 フイルムの感光理論を述べる。 フイルムの処理過程(現像、定着)について説明する。 写真処理の失敗とその原因を推論する。
		10. 歯科用 X 線発生装置と X 線フイルム 口腔内の適切な診断を行うた め、歯科用 X 線発生装置の構 造と用いる X 線フイルムにつ いて習得する。	2. スクリーンタイプフイルムとノンスクリーンタイプフイルムの違いを説明する。3. 歯科用 X 線フイルムパッケージの構造を図
5月28日(火) 1、2限	小豆島正典教授	演習 1 [正常 X 線解剖の読影試験] [Unit 1 - 7までの筆記試験] 今後の講義へスムースに移行で きるようにするため、これまで修 得した知識を整理する。	 ロ内法、パノラマ撮影、頭部単純撮影の正常解剖名を述べる。 Unit 1 - 7 までに習得した知識を整理する。
		11. パノラマ X 線撮影 顎顔面領域の適切な診断を行 うため、パノラマ X 線撮影法 の種類、原理、撮影手技およ び画像の正常解剖を理解す る。	 パノラマ X 線撮影法の種類、原理を説明する。 パノラマ X 線撮影の手技を述べる。 パノラマ X 線写真における正常解剖を説明する。
		12. 頭部 X 線単純撮影法 顔面頭蓋部撮影法の種類、原理、撮影手技および写真の正 常解剖を理解する。	 額面頭蓋部撮影法の種類と投影法を説明する。 額面頭蓋部撮影法における正常解剖を説明する。 造影撮影の適応と造影剤使用禁忌を列記する。

月日	担当者	ユニット名 一般目標	到達目標
6月4日(火)	小豆島正典教授 佐野 司教授 (東京歯科大学)	13. MRI 顎顔面領域の適切な診断を行 うため、磁気共鳴撮像法 (MRI)の画像形成原理と適応 について理解する。	1. MRI の画像形成原理と適応について説明する。 2. MRI で用いられる造影撮影の目的と造影剤 使用禁忌を列記する。 3. 顎関節疾患の MR 画像を説明する。
6月11日(火) 1、2限	小豆島正典教授	14. デジタル X 線撮影 顎顔面領域の適切な診断を行うため、デジタル X 線撮影原理と適応について理解する。	1. デジタル X 線撮影法の原理と特徴を述べる。
		15. X線CT 顎顔面領域の適切な診断を行 うため、X線CTの画像形成原 理と適応について理解する。	1. X線CTの画像形成原理と適応を説明する。 2. CT値、部分容積効果について説明する。 3. CTで用いられる造影撮影の目的と造影剤 使用禁忌を列記する。
		16. 超音波検査 顎顔面領域の適切な診断を行 うため、超音波検査(US)の画 像形成原理と適応ついて理解 する。	1. 超音波断層法の画像形成原理と適応を説明する。
		17. 核医学 顎顔面領域の適切な画像診断 をするために、核医学検査の 画像形成の原理を理解し、各 種検査法の知識を習得する。	 次の用語を定義する。 放射性同位体、ベクレル、キュリー、 シンチグラフィーの原理と適応を説明する。 ^{99m}Tc-MDP、⁶⁷Ga-citrate および FDG の生理 的集積と病的集積を比較する。
6月18日(火)2限	小豆島正典教授	18. 放射線の生物学的影響 適切な放射線検査・治療を行 うために、放射線の細胞に対 する影響について十分な知 識・技能を習得する。	 放射線による DNA 損傷の発生メカニズムを 説明する。 次の用語を定義する。 励起、線エネルギー付与、直接作用、間接 作用、生物学的効果比 放射線の細胞致死効果を高めるのに、酸素 分圧が大切である理由を論ずる。 細胞周期を定義し、放射線感受性について 述べる。
6月25日(火) 1、2限	小豆島正典教授 細川洋一郎教授 (弘前大学)	19. 放射線腫瘍学概論 顎顔面領域の適切な放射線治療を行うため、放射線腫瘍学の基礎的な知識・技能を習得する。	 悪性腫瘍の発育動態を説明する。 腫瘍に対する放射線の作用を列記する。 線量の時間的配分法について説明する。 放射線治療装置について説明する。
		20. 放射線防護 適切な放射線検査・治療を行うために、放射線防護に対する十分な知識・技能を習得する。	 放射線影響による早期組織反応と晩期組織 反応の症状をあげる。 確定的影響と確率的影響を定義する。 放射線被曝の分類と実態について説明する。 放射線影響のリスクを述べる。 医用被曝における患者の防護を説明する。 医療従事者の放射線防護を説明する。

教科書·参考書 (教:教科書 参:参考書 推:推薦図書)

	書名	著者氏名	発行所	発行年
教	歯科放射線学 4版	古本啓一、岡野友宏、小林 馨 編	医歯薬出版	2006年
教	歯科放射線診断 teaching file 第2版	金田隆 (著), 倉林亨 (著)	砂書房	2007年
参	「Q&A」で学ぶ歯科放射線 学:SBOs講義	金田隆 編	学建書院	2011年

成績評価方法

成績:出席:2%、演習1成績:13%、定期試験成績:85%として評価する。

オフィスアワー

氏 名	方式	曜日	時間帯	備考
小豆島正典	В— і	月〜金		不在の時は教室員に伝言の上、必要があればアポイントをとること。

授業に使用する機械・器具と使用目的

[歯科放射線学]

使用機器・器具等の名称・規格		台数	使用区分	使用目的
デ゙ジ゙タルプ゚リンター	ピクトログラフィー4000 Ⅱ	1	視聴覚用機器	講義配布資料の印刷
デジタルビデ゙オカメラ	DCR-TRV30	1	視聴覚用機器	X線撮影、CT、MRI撮影提示
ノートパソコン	iBooK M7692J/A	1	視聴覚用機器	講義のプレゼンテーション用
ネットワークプリンター	DocuCentre230型	1	視聴覚用機器	授業の配布資料印刷
パッソコン一式	Dimension4600	1	基礎実習•研究用機器	授業の配布資料作成
モニター	17インチM9168J/A	1	基礎実習•研究用機器	授業の配布資料作成
プ・リンター	PX-6000	1	基礎実習•研究用機器	授業の配布資料印刷
ノートハ°ソコン	iBOOKG4/COMB	1	視聴覚用機器	講義のプレゼンテーション用
パツコン一式	PowerMac G5	1	基礎実習·研究用機器	授業の配布資料作成
カラーレーサ゛ーフ゜リンター	DOCUPRINTC320 0A	1	基礎実習•研究用機器	講義資料印刷
ノートパソコン	VGN-G1KAP	1	視聴覚用機器	講義のプレゼンテーション用
パ゚ソコン	OptiPlex745	1	基礎実習•研究用機器	PET画像を処理し、同画像の学生提示用データを作成
液晶ディスプレイ	FlexScanS2100	1	基礎実習•研究用機器	歯学教育支援システム用ディス プレー

使用機器・器具等の名称・規格		台数	使用区分	使用目的	
ディスクトップパソコン	200ST	1	視聴覚用機器	歯学教育支援システム用	
パソコン	1525	1	視聴覚用機器	講義資料作成 講義のプレゼンテーション用	
パソコン	MB325J/A	1	視聴覚用機器	講義資料作成	
ノートパソコン	MB003J/A	1	視聴覚用機器	講義のプレゼンテーション用	
ノートパソコン MacBook Pro	MB985J/A	1	視聴覚用(学部授業他)機器	視覚素材を用いた試験問題等 作成用	
ノートパソコン一式	LatitudeE4200	1	視聴覚用(学部授業他)機器	歯学教育支援システム用	
ハードディスク	RHDUXE2. 0	1	視聴覚用機器	講義資料用画像データ保存	
ノートブックパソコン MacBook Pro	MB985J/A	1	視聴覚用機器	症例提示用	
ノートパソコン MacBook	2.26GHzCore2Dup	1	基礎実習•研究用機器	講義のデモ及び研究データ解析	
サーマルフォトプリン ター一式	ASK-4000A	1	視聴覚用機器	症例提示用	
ノートパソコン	VPCP11AKJ	1	視聴覚用機器	症例提示用	
 フルカラーデジタル複 合機	DocuCentre IVC2270PFS	1	視聴覚用機器	講義配布資料作成	
ノートパソコン一式・ MacBook Air 11 インチ	MacBook Air 11 インチ	1	基礎実習•研究用機器	講義の資料提示用	
ノートパソコン MacBook Air	MC505J/A	1	視聴覚用機器	講義の資料提示用	
デスクトップパソコン i M a c 27 インチ	ZOM7	1	基礎実習·研究用機器	講義のデモ及び研究データ解 析	
デジタルカメラ	E-PL3	1	視聴覚用機器	症例プレゼンテーション用	
I Pad Wi-Fi モデル	MC707J/A	1	視聴覚用機器	症例プレゼンテーション用	
ノートパソコン Mac Book Air	MC965J/A	1	視聴覚用機器	症例プレゼンテーション用	
ノートパソコン	PT45146ESFB	2	視聴覚用機器	講義のデモ及び研究データ解 析	
外付けハードディスク ドライブステーション	HD-QL8TU3/R5J	1	視聴覚用機器	講義用 PC ファイルのバックアップ用	
ノートパソコン一式	PB552FFBPR7C51	1	視聴覚用機器	臨床実習における術野の説明	